
Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
1 

JAVA 
 
History of Java 
 

 Java is Platform Independent (Portable) Programming Language. 

 Java is Object Oriented Language. 

 Java was developed in 1991 at Sun Micro system Inc. 

 It took 18 months to develop. 

 It was developed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank and Mike 
Sheridan 

 Its original name was “OAK” but in 1995 it was renamed as “JAVA” 

 
Characteristics of Java(5 marks) 
 

1.) Simple: - Easy to learn and can be used effectively. 

2.) Secure: - Java helps you to download the data from internet without the fear of virus attack. 

3.) Portable: - The programs made in Java can run at any system. 

4.) Object Oriented: - it supports all features of object oriented language. 

5.) Robust: - Ability to provide reliable program development. 

6.) Multithreaded: - More than two processes can be run simultaneously. 

7.) Architecture Neutral: - Write once, run anywhere, anytime forever. 

8.) Distributed: - Java can be used across the network. 

9.) Dynamic: - It provides Verification of many things at run time. 

10.) Memory management: - It provides some mechanism like garbage collection. 

11.) Exception Handling: - You can also handle error effectively in Java. 

 
Why Java is Portable Language? (3 marks) 
 
  

 
 Source 

Code 

Java Compiler 

(javac) 
Byte 

Code 

Byte 

Code 
JVM + JIT 

Exe. 

Code 

Source Code 

Byte Code 

Native Code 

Executable Code 

Javac 

JVM 

JIT 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
2 

 

► The program written by user is called Source code. 

► This Source code with the help of java compiler converted to Byte code. 

► This Byte code is converted to appropriate Native code with the help of JVM (Java Virtual 
Machine). 

► Native code is ready to execute code 

► JVM is the compiler which is different in all different operating system. 

► JVM of windows will not work on Linux. 

► The Native code with the help of JIT (Just In Time) converted to Executable code. 

 
 Java 

 
 

       Byte Code 
 
 
         JVM (JIT) 
 
 
   Windows   Linux    Macintosh 
 
 
JIT (Just In Time) 
 

If any code is compiled two times than it might run slow as expected. But that‟s not the thing with 
Java. After initial released of Java version the Sun Micro System started providing the HotSpot 
technology. 

This technology provides JIT compiler to native code. The selected portion of native code is 
compiled to executable code piece by piece, as demanded. 

It is not possible to compile whole Java program all at once because Java does some rum time 
checking. JIT compiles the code as needed and converts it to executable code. 
 

JVM + JIT is called Application Launcher 
 
Basics Of Java 
 

 Extension of Java program is .java 

 Java program must consists at least one class 

 The no. of class consists in the program that much no. of .class files will be generated. 

 The class name which consist main method and the program file name must be same. 

 The byte code will be generated with .class extension. 

 Java is case sensitive language. 

 To compile java program use Javac command (javac filename.java) 

 To execute java program use Java command (java filename) 
 
  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
3 

JDK and its Components 
 

If you are using Java Development environment than you may need to follow different procedure 
for compiling and executing Java programs. Necessary objects required to execute a Java program is 
available in JDK (Java Development Kit). JDK is the installation package of Java. It has a collection 
of components that are used in development of Java program. 
 

JDK Tools Meaning Use 

javac  Java Compiler Compiles source code to byte code 

java Java interpreter Interprets byte code and generates the output 

jdb Java debugger Used to debug your program 

appletviewer Applet Viewer Used to execute Java applet programs 

javadoc Java Documentation Used to create documentation for Java code. 

 
First Program (test.java) 
 
class test 
{   

public  static void main(String args[ ] ) 
 { 
  System.out.println(“Oh God Help me”); 
  System.out.print(“B‟coz this is ”); 

System.out.println(“first program”); 
 } 
}   
 
 

 

 

 

 

   Compiling      Executing    

 

public: - It is access specifier which allows to call method from outside the class. 

static: - The static keyword allows you to call main method without the object by using class name. 

void : - The main method does not return any value. 

main( ):- The program execution always starts from main method. 

String args[ ]: - it gets the parameter from command line argument and store it in array of string. 

System.out.println( ): - Here System is the default class which is predefined. „Out‟ is the output 
stream and „println‟ is the method used to display data on console. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
4 

Language Building Blocks Or Lexical Issues (3 marks) 
 
The things we use to create java program is called building blocks. It includes the following things 
 

1) Comments: - There are three types of comments available in Java Single line( // ), Multi line ( 
/*….*/ ) and Documentation ( /**…..*/ ). 
 

2) Identifiers : - It is name given to the variables which can store some values. It has some rules 
to follow 

a) It may consist of alphabets, number, underscore and dollar sign 
b) It must not start with number. 
c) No white space is allowed 
d) No keyword can be used as identifier. 
e) Some valid names are mark1, first_value, $price 
f) Some invalid names are 1mark, #name, first name 

 
3) Literals: - Any constant value is called literals. Ex 100, 38.95, „A‟, “hello world” etc 

 
4) White Space: - White space can be single space, new line or tab 

 
5) Separators: - It is used to separate two statements. The most commonly used is semicolon (;). 

Other are comma(,), colon (:), Braces ({ }) etc 
 

6) Keywords: - It is also called reserved words. There are 49 keywords available in Java. 
Keywords cannot be used as variable name. 
 

7) Operators: - Used for different operations. In java we have arithmetic operators, logical 
operator, relational operators etc. 

 
Data Types available in Java (3 – 5 marks) 
 

Data Types 
 
 
 

Integer Floating Point Character  Boolean 
 
Integer: - It is used to store whole number only. All are signed so that they can store negative as well 
as positive values. 
 

Data type Size (byte) Range Default Value 

byte 1 -128 to 127 0 

short 2 -32768 to 32767 0 

int 4 -2147483648 to 2147483647 0 

long 8 -- 0L 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
5 

Floating Point: - It is used to store fractional numbers. 
 

Data type Size (byte) Range Default Value 

float 4 1.4e – 045 to 3.4e +038 0.0f 

double 8 4.9e -324 to 1.8e +308 0.0d 

 
Character: - It is used to store single character. 
 

Data type Size (byte) Range Default Value 

char 2 0 to 65535 „\0‟ 

 
 
Boolean: - It is 8 bit data type used to store logical value i.e. true/false. 
 

Data type Size (byte) Range Default Value 

Boolean 1 true/false false 

 

Operators in Java (3 – 5 marks) 
 

Operators Symbols 

Arithmetic  + ,- , * , / , % 

Relational <, >, <=, >=, !=, == 

Logical &&, ||, ! 

Bitwise &, |, ^, <<, >> 

Assignment  =, +=, -=, *=, /=, %= 

Conditional ? : 

 
Operator Precedence: - It means in what order the expression should be evaluated so that it gives 
correct result. 
    /, *, %  1st Priority 
    +, -  2nd Priority  
    =  3rd Priority 
Type Casting (2 – 3 marks) 
 

In many programs we generally assign the value of one variable to other variable. In Java, 
before assigning values to a variable, if their types are not same then type conversion required. Type 
casting means converting one data type to another data type. 

There are two type of type casting 

1) Implicit (Automatic) type casting 
2) Explicit type casting. 

 
Implicit (Automatic) casting: - This is automatically done by Java compiler when the types are 
compatible and destination type is larger than the source type. For example if we assign int value to 
long type than it will be converted automatically. 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
6 

From To 

byte short, int, long, float, double 

short int, long, float, double 

char int, long, float, double 

int long, float, double 

long, float, double 

float double 

 
Explicit casting: - The expression of destination type is not larger than the source type then the 
conversion will not be done automatically, we have to convert it explicitly. For example if we want to 
store long value to int then it must be done explicitly. 
 
long a = 9999999; 
int  i = (int) a; 
 
class Conversion 
 { 

public static void main(String args[])  
{ 

byte b; 

int  i = 257; 

long L; 

double d = 323.142; 

L = i // Implicit Conversion 

System.out.println("\nConversion of int to byte."); 

b = (byte) i; // Explicit Conversion 

System.out.println("i and b " + i + " " + b); 

System.out.println("\nConversion of double to int."); 

i = (int) d;  // Explicit Conversion 

System.out.println("d and i " + d + " " + i); 

System.out.println("\nConversion of double to byte."); 

b = (byte) d; // Explicit Conversion 

System.out.println("d and b " + d + " " + b); 

} 

} 
 
Scope and Life time of a Variable (3 marks) 
 

When we declare a variable, it has a specific scope up to where it can be accessed and can be 
used. When any variable is declared within block then scope of that variable will be within that block 
only. If you create any variable within a method then scope of that variable will be within that method. 

The region of program in which a variable is available to access is called scope of variable. 
The region between two curly brackets is called block. A block defines a scope. Each time you start a 
new block, you are creating new scope.  
class scope 
{ 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
7 

 public static void main(String args[ ]) 
 {         Starts scope1 
  int x = 100; 
  for (int i = 1; i<=3; i++) 
  {       Starts scope2 
   int x = 500;  // Re-declaration error 
   int y = 200;  // known only to this block 
   System.out.println (“x = “ + x); 
   System.out.println (“y = “ + y); 
   

} // scope2 over 
   

System.out.println (“x = “ + x); 
  System.out.println (“y = “ + y);  // Error Out of scope 
   
  int y = 1000; 
  System.out.println (“y = “ + y); 
 } // scope1 over 
} 
 

Control Statement(3-5 marks) 
 
 

 
 

 

 

 

 

 
 
Branching or Decision making Statement 
 
 Java supports two branching statements: if and switch. These statements allow you to control 
the flow of your program‟s execution based upon conditions known only during run time.  
if….else statement : It is a simplest branching statement we use. Most often, the expression used to 
control the if statement will involve the relational operators.  
 
Syntax   if (condition) 
   { 
    …............. 

} 
else 
{ 

     …………. 
} 

Control Statement 

Iteration Branching Jumping 

While 

Do..While 

If…else 

Switch Case 

Break 

Continue 

For Return 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
8 

Nested ifs 
A nested if is an if statement that is the target of another if or else. Nested ifs are very common 

in programming. When you nest ifs, the main thing to remember is that an else statement always refers 
to the nearest if statement that is within the same block as the else and that is not already associated 
with an else.  
Here is an example: 
if(i == 10)  
{ 

if(j < 20)  
    a = b; 

if(k > 100)  // this if is 
c = d;  

else   // associated with this else 
a = c;         

} 
else  

a = d;          // this else refers to if(i == 10) 
 
As the comments indicate, the final else is not associated with if(j<20), because it is not in the same 
block (even though it is the nearest if without an else). Rather, the final else is associated with if(i==10). 
The inner else refers to if(k>100), because it is the closest if within the same block. 
 
The if-else-if Ladder 

A common programming construct that is based upon a sequence of nested ifs is the if-else-if 
ladder. It looks like this: 
 
if(condition) 

statement; 
else if(condition)  

statement; 
else if(condition) 

statement; 
. 
. 
. 
else 

statement; 
 
The if statements are executed from the top down. As soon as one of the conditions controlling 

the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If 
none of the conditions is true, then the final else statement will be executed. The final else acts as a 
default condition; that is, if all other conditional tests fail, then the last else statement is performed. If 
there is no final else and all other conditions are false, then no action will take place.  

 
Switch Case 

The switch statement is Java‟s multiway branch statement. It provides an easy way to dispatch 
execution to different parts of your code based on the value of an expression. As such, it often 
provides a better alternative than a large series of if-else-if statements. 
Here is the general form of a switch statement: 
switch (expression) 
 { 

case value1: 
// statement sequence 
break; 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
9 

case value2: 
// statement sequence 
break; 
. 
. 
. 

case valueN: 
// statement sequence 
break; 

default: 
// default statement sequence 

} 
The expression must be of type byte, short, int, or char; each of the values specified in the case 

statements must be of a type compatible with the expression. Each case value must be a unique literal 
(that is, it must be a constant, not a variable). Duplicate case values are not allowed.  
 

The switch statement works like this: The value of the expression is compared with each of the 
literal values in the case statements. If a match is found, the code sequence following that case 
statement is executed. If none of the constants matches the value of the expression, then the default 
statement is executed. However, the default statement is optional. If no case matches and no default is 
present, then no further action is taken.  

The break statement is used inside the switch to terminate a statement sequence. When a 
break statement is encountered, execution branches to the first line of code that follows the entire 
switch statement. This has the effect of “jumping out” of the switch.  
 
Looping Statement  
 

Looping statements are used to execute some statement repeatedly. There are three types of 
looping statements. 

1) For loop 
2) While loop 
3) Do..while loop 

 
1) For Loop: - It is mostly used loop. It is entry controlled loop. 
 

Syntax  
for(Exp1; Exp2; Exp3) 
{ 

- - - - - - - - - - - 
 - - - - - - - - - - - 
- - - - - - - - - - - 

} 
Exp1   Initialisation 
Exp2   Condition  
Exp3  Increment/Decrement 

 
You can also use a loop within another loop that is called nesting of loop. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
10 

2) While loop: - It is used when you don‟t know how many number of iteration you want to execute. 
Syntax 

Initialisation 
While(condition) 
{ 

- - - - - - - - - - - 
 - - - - - - - - - - - 
- - - - - - - - - - - 
Increment/Decrement  

} 
3) Do..While loop: - It is exit controlled loop. In do..while the statements are executed first and then 

the condition is checked. If the condition is true the block is executed again. Thus the statements 
are executed at least once even if the condition is false. 
Syntax 
  Initialisation 
  Do 
  { 

   - - - - - - - - - - - 
 - - - - - - - - - - - 
- - - - - - - - - - - 
Increment/Decrement  

} While(condition); 
 
Jumping Statement (3 marks)  
 
 These statements are generally used to jump to another location of program. There are three 
types of jumping statements. 
 

1) Break 
2) Continue 
3) Return 

 
1) Break: - When we want to jump out of the loop without waiting to get back for condition check. Then 

we can use break statement. Break I used to terminate the loop. A break statement is generally 
associated with if statement. The break statement transfers the control at the end of the loop. 

 
for(  ) 
{ 
 if(condition) 
  break; 

  - - - - - - - - - - - 
 - - - - - - - - - - - 

 } 
 
Labelled Break: - To break a particular loop we can give a label to the loop and use break statement 
before that label 
   Label: 

  for( ) 
{ 

   if(condition) 
    break Label; 

    - - - - - - - - - - - 
   } 
class BreakLoop4  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
11 

{ 
public static void main(String args[ ]) 
 { 

outer:  
for(int i=0; i<3; i++)  
{ 

System.out.print("Pass " + i + ": "); 
inner: 
for(int j=0; j<100; j++)  
{ 

if(j == 10)  
    break outer; // exit both loops 
System.out.print(j + " "); 

}  
System.out.println("This will not print"); 

}  
System.out.println("Loops complete."); 
} 

} 
----------------------------------------------------------- 
class BreakErr  
{ 

public static void main(String args[])  
{ 

one:  
for(int i=0; i<3; i++) 
 { 

System.out.print("Pass " + i + ": "); 
} 
for(int j=0; j<100; j++)  
{ 

if(j == 10)  
   break one; // WRONG 
System.out.print(j + " "); 

} 
} 

} 
 
2) Continue: - Continue statement skip the current iteration and continues the loop to the next 

iteration. So when we want to skip some statements based on condition the continue can be used. 
It passes control at the beginning of the loop. It is usually associated with if statement. 

 
for(  ) 
{ 
 if(condition) 
  continue; 
 - - - - - - - - - - - 

 - - - - - - - - - - - 
} 

 
Labelled Continue: - To continue a particular loop we can use labelled continue. 
 

outer:  
for(int i=0; i<3; i++)  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Nr Balaji Mandir, B/h BusStand Nr Trikon Bagh, Rajkot           Version: 02 
12 

{ 
inner: 
for(int j=0; j<100; j++)  
{ 

System.out.print(j + " "); 
if(j == 10)  
    continue outer;  
else 
    continue inner 

}  
} 

 
3) Return: - It returns control to the calling function. It returns value to the calling function. Only one 

value is returned to calling function. 
 

Array (3 marks) 

 
 Array is the collection of variable with similar data type that shares a common name. Individual 
value of array is called element. We cannot have array of 10 numbers in which 5 are of integer and 5 
are of float data type. We can access the elements of array by its index. Index always starts with zero. 
 
Single Dimension Array: - It is collection of array with one row and multiple columns. 
  Syntax data type array_name[ ] ; 
  Example int marks[ ]; // declaration 
 
Here marks is said to be array of integers. The array is jus created but not ready to use. To use this 
array we must allocate memory space to it using new keyword. 
 
  Syntax  array_name = new data type[size]; 
  Example marks = new int [5]; // creation 
 
  marks[ ] = {10,20,30,40,50} // initialization 
 
Multi Dimension Array: - It represents a variable which has values in tabular form i.e. rows and 
columns. 
  Syntax data type array_name[ ] [ ] = new data type[row] [col] 
  Example int A[ ][ ] = new int [3] [3]; 
 
  A [ ] [ ] = {{10, 20, 30}, {40, 50, 60}, {70, 80, 90}}; 
 
 
 
 
 

YOR Classes 
 

Any BCA, BSc.IT, MCA, MSc.IT subject coaching. 

Project Training on VB, C#.Net, ASP.Net, PHP in 5th and 6th Semester 

Competitive Exams like CMAT, Bank Clerk, Bank PO, Post Office, SSC 

Reasonable Fees Full Syllabus cover with Practical 100% Result of Classes 
 

Vishal Sir (MCA) 9427732231  Naman Sir (MCA) 9408526428 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
1 

Class 
 
  A class can be declared with the use of class keyword. It defines a new data type. Once it 
defined, it can be used to create object of the type. 
Syntax 
  class classname 
  { 
   Type variable 1; 
   Type variable 2; 
   : 
   : 
   Type variable N; 
 
   Type method 1( parameter ) 
   { 
   } 
   Type method 2 ( parameter ) 
   { 
   } 
   : 
   : 
   Type method N( parameter ) 
   { 
   } 
  }; 
 

The variables defined within a class are called instance variables. The coding is written within 
methods. The methods and variables defined within a class are called members of the class. The 
variables are accessed by the methods defined in that class. So method determines how a class data 
can be used. 

Each instance of class contains its own copy of these variables. The data for one object is 
separate and unique from the data for another object. 
 
// This program declares two Box objects. 
class Box  
{ 

double width; 
double height; 
double depth; 

} 
class BoxDemo2 
{ 

public static void main(String args[ ])  
{ 

Box mybox1 = new Box( ); 
Box mybox2 = new Box( ); 
double vol; 
// assign values to mybox1's instance variables 
mybox1.width = 10; 
mybox1.height = 20; 
mybox1.depth = 15; 
/* assign different values to mybox2's 
instance variables */ 
mybox2.width = 3; 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
2 

mybox2.height = 6; 
mybox2.depth = 9; 
 
// compute volume of first box 
vol = mybox1.width * mybox1.height * mybox1.depth; 
System.out.println("Volume is " + vol); 
 
// compute volume of second box 
vol = mybox2.width * mybox2.height * mybox2.depth; 
System.out.println("Volume is " + vol); 

} 
} 
 
New Operator (2 – 3 marks) 
 
 Creating object is two step process. First you must declare a variable of the class type. Second 
you must allocate memory to that object. You must acquire an actual copy of the object and assign it to 
that variable. This can be done dynamically by using new operator. The new operator allocates memory 
for an object.  
 
   Box b1; // declares reference 
   b1 = new Box( ); // allocates memory 
 
The new keyword is used to allocate memory equal to size of instance variables of class. Before using 
new keyword the object cannot be used. The object gets physical location only after memory allocation 
by new keyword. 
 
Statement       Effect 
 
Box b1   
      b1 
 
b1 = new Box( );   
      b1 
        object 
Reference Variable 
 
Box b1 = new Box( ); 
Box b2 = b1; 
 
      b1 
 
 
      b2  
 
 
Here both b1 and b2 pointing to the same object. Here b1 does not allocate any memory to b2. It simply 
makes b2 refer to the same object as b1. So nay changes made to the object with b2 will affect the 
object to which b1 is referring 
 

NULL 

 Width 

Height 

Depth 

 

 

Width 

Height 

Depth 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
3 

class Box  
{ 

double width; 
double height; 
double depth; 
// display volume of a box 
void volume( )  
{ 

System.out.print("Volume is "); 
System.out.println(width * height * depth); 

} 
} 
class BoxDemo3  
{ 

public static void main(String args[ ])  
{ 

Box mybox1 = new Box( ); 
Box mybox2 = new Box( ); 
 
// assign values to mybox1's instance variables 
mybox1.width = 10; 
mybox1.height = 20; 
mybox1.depth = 15; 
 
// assign values to mybox2's instance variables 
mybox2.width = 3; 
mybox2.height = 6; 
mybox2.depth = 9; 
 
// display volume of first box 
mybox1.volume( ); 
 
// display volume of second box 
mybox2.volume( ); 

} 
} 
 

 Write program for returning value and passing the parameter to method. 
 

Constructor (3 marks) 
 

 It is special method which has same name as its class. 
 It is automatically invoked when object is created. 
 It does not have any return type not even void. 
 It is used to initialize variables of class when object is created. 
 It can have parameters. 
 It can be overloaded. 

 
class Box  
{ 

double width; 
double height; 
double depth; 
// This is the constructor for Box. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
4 

Box( ) 
 { 

System.out.println("Constructing Box"); 
width = 10; 
height = 10; 
depth = 10; 

} 
// compute and return volume 
double volume() 
 { 

return width * height * depth; 
} 

} 
class BoxDemo6 
 { 

public static void main(String args[])  
{ 

// declare, allocate, and initialize Box object 
Box mybox1 = new Box(); 
Box mybox2 = new Box(); 
double vol; 
// get volume of first box 
vol = mybox1.volume(); 
System.out.println("Volume is " + vol); 
// get volume of second box 
vol = mybox2.volume(); 
System.out.println("Volume is " + vol); 

} 
} 

 Write same program for parameterised constructor 
 
“this” keyword (2 marks) 
 

Sometimes a method will need to refer to the object that invoked it. Java defined “this” keyword 
for this. “this” can be used inside any method to refer current object. 
 Sometimes we have same names of instance variables and other local variables. “this” keyword 
can be used to distinguish them. 
 
 Box(double width, double height, double depth) 
 { 
  this.width = width; 
  this.height = height; 
  this.depth = depth; 
 } 
 
Garbage Collection (2 marks) 
 

Since the object memory is dynamically allocated by using new keyword. But the de-allocation of 
memory is also required. In C++ we have concept of delete operator to release memory manually. But 
in java de-allocation is done automatically. The technique is called Garbage collection. When no 
reference to an object exists then that object is no longer needed and the memory occupied by that 
object can be released. 

 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
5 

Finalize ( ) method (2 marks) 
 
 Before object is destroyed it must perform some action such as free the resources hold by that 
object. For this java provides finalize( ) method. 

With the help of finalize( ) method you can define specific action when object is just about to 
destroyed by garbage collector. Inside finalize( ) method you must specify those actions that must be 
performed before object is destroyed. 
 
 
Method Overloading (3 – 5 marks) 
 
 It is one of the ways that Java supports polymorphism. If there is more than one method in class 
with same name but different number or types of parameter then method is called overloaded and this 
process is called method overloading. The number and type of parameter is called signature of method. 
 When method is invoked Java tries to find exact match of the method. If no exact type is found 
then java tries to convert the type. 
 
class OverloadDemo  
{ 

void test()  
{ 

System.out.println("No parameters"); 
} 
// Overload test for one integer parameter. 
void test(int a)  
{ 

System.out.println("a: " + a); 
} 
// Overload test for two integer parameters. 
void test(int a, int b)  
{ 

System.out.println("a and b: " + a + " " + b); 
} 
// overload test for a double parameter 
double test(double a)  
{ 

System.out.println("double a: " + a); 
return a*a; 

} 
} 
class Overload  
{ 

public static void main(String args[])  
{ 

OverloadDemo ob = new OverloadDemo(); 
double result; 
// call all versions of test() 
ob.test(); 
ob.test(10); 
ob.test(10, 20); 
result = ob.test(123.25); 
System.out.println("Result of ob.test(123.25): " + result); 

} 
} 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
6 

Constructor Overloading 
 
 When we create more than one constructor with different parameter it is called constructor 
overloading. Sometimes it is needed to create object with different parameters then we can use 
constructor with different parameters. 
 
class Box 
{ 

double width; 
double height; 
double depth; 
// constructor used when all dimensions specified 
Box(double w, double h, double d)  
{ 

width = w; 
height = h; 
depth = d; 

} 
// constructor used when no dimensions specified 
Box()  
{ 

width = -1;  // use -1 to indicate 
height = -1; // an uninitialized 
depth = -1;  // box 

} 
// constructor used when cube is created 
Box(double len)  
{ 

width = height = depth = len; 
} 
// compute and return volume 
double volume()  
{ 

return width * height * depth; 
} 

} 
class OverloadCons  
{ 

public static void main(String args[ ])  
{ 

// create boxes using the various constructors 
Box mybox1 = new Box(10, 20, 15); 
Box mybox2 = new Box( ); 
Box mycube = new Box(7); 
double vol; 
// get volume of first box 
vol = mybox1.volume(); 
System.out.println("Volume of mybox1 is " + vol); 
 
// get volume of second box 
vol = mybox2.volume(); 
System.out.println("Volume of mybox2 is " + vol); 
 
// get volume of cube 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
7 

vol = mycube.volume(); 
System.out.println("Volume of mycube is " + vol); 

} 
} 
 
Static Members (3 marks) 
 
 We can access the member variables and method by the object of its class. The static members 
are initialized and static methods are executed before any object of its class are created. The main( ) 
method is static because it must be executed before any object of that class is created. You can also 
define a block as static. This static block will be executed when class is loaded in memory. 

 The static members can call only static methods and access only static variables. 
 They cannot refer to “this” or “super” keyword. 

 
class UseStatic  
{ 

static int a = 3; 
static int b; 
static void meth(int x)  
{ 

System.out.println("x = " + x); 
System.out.println("a = " + a); 
System.out.println("b = " + b); 

} 
static 
 { 

System.out.println("Static block initialized."); 
b = a * 4; 

} 
public static void main(String args[ ]) 
 { 

meth(42); 
} 

} 
 

 
Access Specifier (3 marks) 
 
 It is the attribute of encapsulation. With access control you can manage what part of a program 
can be accessed. There are four type of Access control available in Java 
 

1) Public: - The members defined by public specifier can be accessed from anywhere i.e. by its 
class member and also by other class members. 
 

2) Private: - The private members can only be accessed within class. The member of other class 
cannot access private members. 

 
3) Protected: - This specifier is used in inheritance only. The protected member can be accessed 

by the member of other package but only to the subclass of the class. 
 

4) Default: - When you do not specify any access specifier, the default specifier is applied to that 
member. The default members can be accessed from the member of any class but in same 
package. 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

101 Shiromani Complex, Above YOR Restaurant, Opp Balaji Mandir, B/h Bus Stand, Nr Trikon Bagh Rajkot Version: 02 
8 

Final Keyword (3 marks) 
 
 There are three uses of final keyword. The final keyword can be applied to variables, method 
and classes.  
 

 Declaring a variable as final makes it constant. So the content of the final variable cannot be 
modified by any statement. Thus final variable can be used as read only. 

 Second use of final keyword is to prevent method over riding. The method which is declared as 
final is cannot be over ridden. Once the method is declared as final you cannot over ride that 
method to its child class. 

 Third use of final keyword is to prevent inheritance. The class declared as final is cannot be 
inherited. Once you declared a class as final than it cannot become parent class or derived class. 
Means that class cannot be inherited. 

 

  

 

YOR Classes 
 

Any BCA, BSc.IT, MCA, MSc.IT subject coaching. 

Project Training of 5th and 6th Semester on VB, C#.Net, ASP.Net, PHP  

Competitive Exams like CMAT, Bank Clerk, Bank PO, Post Office, SSC 

Vishal Sir (MCA) 9427732231  Naman Sir (MCA) 9408526428 
 

 Reasonable Fees  

 Best Material 

 Experience Faculty 

 Full Syllabus cover with Practical 

 100% Result of Classes always 

 Library with Latest Books and Magazines 

 Proper Guidance for any Exam 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
1 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
2 

Inheritance 

A class can acquire the properties of another class is called inheritance. It provides the facility of 
reusability. The elements are created once and can be reuse again at many places with the help of 
inheritance. 

 The class which is being inherited is called super class or parent class and the class that inherits 
the properties of super class is called subclass or child class. A subclass is specialized version of a 
super class. It inherits all of the instance variable and methods defined by super class. 

 To inherit a class we use “extends” keyword. The subclass uses extends keyword after subclass 
name. 

Syntax:  class super 
   { 
    - - - - - - - -  
    - - - - - - - -    
   } 
   class sub extends super 
   { 
    - - - - - - - -  
    - - - - - - - -  
   } 

 
Types of inheritance 
 

1) Single Inheritance: - If there is only one super class and one subclass then that inheritance is 
single inheritance. 
 

 
 

class A 
{ 
 -------- 
} 
class B extends A 
{ 
 ---------- 
} 

 
2) Hierarchical Inheritance: - If there is one super class and more than one subclass then that 

inheritance is called hierarchical inheritance. 
 

 
 
 
 

class A 
{ 
 -------- 
} 
class B extends A 
{ 
 ---------- 
} 
class C extends A 
{ 
 ---------- 
} 

A 

B 

A 

B D C 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
3 

 
3) Multilevel Inheritance: - If one class extends is super class and another class extends its 

subclass then the inheritance would be multilevel inheritance. 
 

 

class A 
{ 
 -------- 
} 
class B extends A 
{ 
 ---------- 
} 
class C extends B 
{ 
 ---------- 
} 

 
Imp Note: - In Java multiple inheritance is not possible. In multiple inheritance there is one subclass 
and more than one super class.  

 
class A  
{ 

int i, j; 
void showij()  
{ 

System.out.println("i and j: " + i + " " + j); 
} 

} 
// Create a subclass by extending class A. 
class B extends A  
{ 

int k; 
void showk()  
{ 

System.out.println("k: " + k); 
} 
void sum()  
{ 

System.out.println("i+j+k: " + (i+j+k)); 
} 

} 
class SimpleInheritance 
{ 

public static void main(String args[])  
{ 

A superOb = new A(); 
B subOb = new B(); 

 
superOb.i = 10; 
superOb.j = 20; 
System.out.println("Contents of superOb: "); 
superOb.showij(); 
 

A 

B 

C 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
4 

subOb.i = 7; 
subOb.j = 8; 
subOb.k = 9; 
System.out.println("\nContents of subOb: "); 
subOb.showij(); 
subOb.showk(); 
System.out.println(); 
System.out.println("Sum of i, j and k in subOb:"); 
subOb.sum(); 

} 
} 
 
Super Keyword (3 marks) 
 
 Whenever a sub class needs to refer to its immediate super class we can use keyword super. 
Super keyword has two uses (i) To call the constructor of super class. (ii) To access the members of the 
super class that has been hidden by subclass. 
 

Characteristics  

 Used to invoke the constructor of parent class which has parameters. 

 Super must be first statement in body of sub class constructor. 

 Only the immediate parent class data and methods can be accessed. 

 If only default constructor is used then no need of super keyword. 

 You can call overridden method of parent class using super keyword. 

class check1 
{ 

int i,j; 
check1( ) 
{ 
 i = j = 0; 
} 
check1(int a ) 
{ 
 i = a; 

j = 0; 
} 
check1(int a, int b ) 
{ 
 i = a; 
 j = b; 
} 
void pudata1() 
{ 
 System.out.println(“check1”); 
 System.out.println(“i = “ + i); 
 System.out.println(“j = “ + j); 
} 

} 
class check2 extends check1 
{ 
 int k; 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
5 

 check2( ) 
 { 
  super( ); 
  k = 0; 
 } 
 check2(int a ) 
 { 

super(a); 
k = 0; 

} 
check2(int a, int b ) 
{ 

super(a, b); 
k = 0; 

} 
check2(int a, int b, int c ) 
{ 

super(a, b); 
k = c; 

} 
void pudata2() 
{ 
 putdata1(); 

  System.out.println(“check2”); 
  System.out.println(“k = “ + k); 
 } 
} 
class superchk 
{ 
 public static void main(String args[ ]) 
 { 
  check1 obj1 = new check1(100,200); 
  check2 ob1 = new check2( ); 

check2 ob2 = new check2(10); 
check2 ob3 = new check2(11,12); 
check2 ob4 = new check2(13,14,15); 
obj1.putdata1(); 
ob1.putdata2(); 
ob2.putdata2(); 
ob3.putdata2(); 
ob4.putdata2(); 

 } 
} 
 
Program 2 
class A 
{ 

int i; 
} 
// Create a subclass by extending class A. 
class B extends A  
{ 

int i; // this i hides the i in A 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
6 

B(int a, int b)  
{ 

super.i = a; // i in A 
i = b; // i in B 

} 
void show()  
{ 

System.out.println("i in superclass: " + super.i); 
System.out.println("i in subclass: " + i); 

} 
} 
class UseSuper 
{ 

public static void main(String args[])  
{ 

B subOb = new B(1, 2); 
subOb.show(); 

} 
} 

 
Method Overriding (3 marks) 

If you have one method in subclass with same name and same type of signature as in super 
class then this method is said to be overridden and this process is called method overriding. When an 
overridden method is called by subclass object the method of sub class is invoked and method defined 
in super class will be hidden. 
  
class A  
{ 

int i, j; 
A(int a, int b)  
{ 

i = a; 
j = b; 

} 
void show() 
{ 

System.out.println("i and j: " + i + " " + j); 
} 

} 
class B extends A 
{ 

int k; 
B(int a, int b, int c) 
{ 

super(a, b); 
k = c; 

} 
void show() 
{ 
 super.show(); 

System.out.println("k: " + k); 
} 

} 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
7 

class Override 
{ 

public static void main(String args[])  
{ 

B subOb = new B(1, 2, 3); 
subOb.show(); // this calls show() in B 

} 
} 
 
Abstract Class and Method (3 marks) 

 In some situation the methods of super class do not defined but they must be define in subclass 
properly. The super class defines just the structure or general form of method and these methods must 
be defined in subclass. This can be done by using abstract methods. 

Characteristics  
 When method is declared as abstract then sub class must override this method. 
 The method can be declared as abstract by using abstract keyword. 
 The class which has abstract method must be declared as abstract class. 

 

Rules 
 The abstract method must be in abstract class. 
 The abstract methods do not have body. 
 No objects can be created of abstract class. 
 Only reference of abstract class can be created. 
 The abstract class must be inherited by at least one subclass. 
 The subclass of abstract class must override all abstract methods of super class. 

 

Note: - The methods which are not abstract are called concrete methods 
 
abstract class A 
{ 

abstract void callme( ); 
void callmetoo( )  //Concrete Methods are also allowed in abstract class.  
{ 

System.out.println("This is a concrete method."); 
} 

} 
class B extends A  
{ 

void callme()  
{ 

System.out.println("B's implementation of callme."); 
} 

} 
class AbstractDemo  
{ 

public static void main(String args[ ])  
{ 

B b = new B(); 
b.callme(); 
b.callmetoo(); 

} 
}



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
8 

Command Line Arguments ( 3 marks) 
 
 You can pass arguments to the main( ) method. This can be done at run time. You can pass 
information into a program when you run it. The main( ) method takes arguments as string and it stores 
the arguments in array of string. 
class cmdLineEx 

{ 
 public static void main(String args[ ]) 
 { 
  for(int i = 0; i< args.length; i++) 
   System.out.println(“Argument” + i + “ : “ + args[i]); 
 } 
} 
Execute program  D:\java cmdLineEx 123 ABC God is Great 
 
Output Argument 0 : 123 
  Argument 1 : ABC 

Argument 2 : God 
Argument 3 : is 
Argument 4 : Great 

 
Dynamic Method Dispatch (3 marks) 

 
 Method overriding fulfils the concept of polymorphism. But this is compile time polymorphism not 
runtime. The call to a method should be resolved at runtime. The dynamic method dispatch is a 
mechanism by which the call to overridden method is resolved at runtime. 
 This is done by super class reference. The reference used to call overridden method. The 
method will be called to which the reference is pointing at runtime. 
 
class A 
{ 

void callme()  
{ 

System.out.println("Inside A's callme method"); 
} 

} 
class B extends A 
{ 

// override callme() 
void callme()  
{ 

System.out.println("Inside B's callme method"); 
} 

} 
class C extends A  
{ 

// override callme() 
void callme()  
{ 

System.out.println("Inside C's callme method"); 
} 

} 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
9 

class Dispatch  
{ 

public static void main(String args[])  
{ 

A a = new A(); // object of type A 
B b = new B(); // object of type B 
C c = new C(); // object of type C 
 
A r; // obtain a reference of type A 
r = a; // r refers to an A object 
r.callme(); // calls A's version of callme 
 
r = b; // r refers to a B object 
r.callme(); // calls B's version of callme 
 
r = c; // r refers to a C object 
r.callme(); // calls C's version of callme 

} 
} 
 
Native Methods (2 marks): - Native methods are those methods which are written in some other 
language like C or C++. You can use these methods. Native keyword is used to declare a method as 
native. But native methods are not defined in java program. 
 Most native methods are written in C language. The mechanism used to integrate C code with a 
java program is called Java Native Interface (JNI). 
 
Volatile (2 marks): - If variable is modified by volatile keyword, it can be changed unexpectedly by 
other part of program such as threads. In multithreading there may be more than one threads which 
share a same variable. Each thread can keep its own private copy of such shared variable. The real 
(master) copy of the variable is updated various times. In such case the thing only matters is master 
copy of that variable. So by volatile keyword compiler always use master copy of such variable. 
 
Transient (2 marks): - When instance variable is specified as transient then java runtime system will 
not write its content to permanent storage area when instance is saved.  
 

Object Class 
 
There is one special class Object, defined by Java. All other classes are sub classes of Object. That is, 
Object is a super class of all other classes. This means that a reference variable of type Object can 
refer to an object of any other class. 
 

Method Description 

void finalize( ) Called before an unused object is recycled. 

void notify( ) Resumes execution of a thread waiting on the invoking object. 

String toString( ) Returns a string that describes the object. 

void wait( ) Waits on another thread of execution. 

Class getClass( ) Obtains the class of an object at run time. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
10 

Interface 
 
 Java does not support multiple inheritance, but it is possible with the help of interface. More than 
one interface can be implemented in a class.  
 In interface we have methods but all methods will be abstract. We cannot define method within 
interface. So the class which implements the interface must override all methods declared in interface. 
 
Syntax: access specifier interface interface_name 
  { 
   Type variable1 = value; 
   Type variable2 = value; 

- - - - - -  
   Type variableN = value; 
   Return_type method1(parameter); 
   Return_type method2(parameter); 

- - - - - -  
   Return_type methodN(parameter); 
  } 
 

 The interface keyword is used to define interface 

 We are not allowed to create instance variable inside interface. 

 We can only declare the method in the interface but we cannot define method in interface. 

 We are not allowed to create instance of an interface. 

 But we are allowed to create its reference. 

 The access specifier can be public or default 

 The variables of interface are implicitly final & static 

 The variables must be initialized in interface 

 All methods are implicitly abstract in interface  
 
How to implement Interface? 
 
 We can use “implements” keyword to implement interface in our class. 
 

Syntax: class class_name [extends class] implements interface1, interface2…….. 

 A class can extend another class and also implements interface. 

 The extends must come before implements keyword 

 More than one interface can be separated by comma (,) 

 A class must implements all methods of interface and must be declared as public 

 If you want only interface in file then file name and interface name must be same 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
11 

interface testme 
{ 

void test1(int t); 
} 
class test implements testme 
{ 

public void test1(int t) 
{ 

System.out.println(“Test interface class”); 
} 

} 
class inftest 
{ 

public static void main(String args[ ] ) 
{ 

test  t1 = new test( ); 
t1.test1(100); 

} 
} 
  
Interface implementing Interface 

 As we can inherit one class to another class same way we can inherits one interface to another 
interface. We can do this by using extends keyword while creating interface. 

Syntax: interface interface_name extends interface1 
  { 
   ---------- 
  } 
interface A 
{ 

void method1(); 
void method2(); 

} 
interface B extends A 
{ 
 void method3(); 
} 
class C implements B 
{ 

public void method1() 
{ 
 System.out.println(“Method1”); 
} 
public void method2() 
{ 
 System.out.println(“Method2”); 
} 
public void method3() 
{ 
 System.out.println(“Method3”); 
} 

} 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
12 

class impinterface 
{ 
 public static void main(String args[ ]) 
 { 
  C obj1 = new C (); 
  obj1.method1(); 
  obj2.method2(); 
  obj3.method3(); 
 } 
} 
 
Variables within interface 
 
interface constchk 
{ 
 int no = 1; 
 int ans = 2; 
 int ques = 3; 
} 
class testvar implements constchk 
{ 
 void printdata() 
 { 
  System.out.println(“no = “ + no); 

System.out.println(“ans = “ + ans); 
//ques = ques + 10; ERROR 
System.out.println(“ques  = “ + ques); 

 } 
} 
class chkvar 
{ 
 public static void main(String args[ ]) 
 { 

testvar obj1 = new testvar(); 
obj1.printdata( ); 

 } 
} 
 
 

 

 

 

 

 

  

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
1 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
2 

Package 
 
 A package is just a container or collection of classes. It is a directory or folder which contains 
the source files and its class files. We have to take care about duplicate class name. But using package 
you can have more than one class of same name but in different packages. 

 To create a package the “package” keyword is used as the first executable statement of your 
program. After package keyword you have to give package name i.e. directory in which your class files 
and source files will be stored. 

Syntax : package package_name; 

 
package mypack; 
class player 
{ 
 String name; 
 int score; 
 player(String name, int score) 
 { 
  this.name = name; 
  this.score = score; 
 } 
 void display() 
 { 
  System.out.println(“Player name “ + name); 
  System.out.println(“Player score “ + score); 
 } 
} 
class PackageTest 
{ 
 public static void main(String args[ ]) 
 { 
  player p1 = new player(“Sachin”, 186); 
  player p2 = new player(“Dravid”, 153); 
 
  p1.display(); 
  p2.display(); 
 } 
} 
 
To compile   D:\java\mypack\javac *.java 

To run  D:\java\java mypack.PackageTest 

 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
3 

Access Control in package 
 

 Private Default Protected Public 

Same class   Yes   Yes  Yes  Yes 

Same package 
sub class 

x NO  Yes  Yes  Yes 

Same package 
non sub class 

x NO  Yes  Yes  Yes 

Different Package 
subclass 

x NO x NO  Yes  Yes 

Different Package 
non subclass 

x NO x NO x NO  Yes 

 
 
Import Statement 
 
 After creating package you can use its classes into other java files. To do this we have to import 
that package in which class belongs to. Importing package is similar to including header files in C or 
C++. Similarly we can import a package to use classes and methods of that package. To import 
package “import” keyword is used. 
 Import must be the first executable statement in program but if package and import both are used 
then package must be the first statement. No executable statement is allowed between package and 
import. 
 
Syntax : import package_name; 
 
 
Program name:- player.java in package mypack 
 
package mypack; 
public class player 
{ 
 String name; 
 int score; 
 player(String name, int score) 
 { 
  this.name = name; 
  this.score = score; 
 } 
 void display() 
 { 
  System.out.println(“Player name “ + name); 
  System.out.println(“Player score “ + score); 
 } 
} 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
4 

Program name:- ImportEx.java in your regular folder. 
 
import mypack.* // OR mypack.player 
class ImportEx 
{ 
 public static void main(String args[ ]) 
 { 
  player p1 = new player(“Saurav”, 180); 
  player p2 = new player(“Sehwag”, 219); 
 
  p1.display(); 
  p1.display(); 
 } 
} 
 

Java API Packages Includes 

java.applet This package contains classes to implement applet 

java.awt This is abstract window toolkit package. Used for GUI 

java.lang This is language package. It includes String, System, Math class 

java.net It is used for network. Its network package 

java.util This is utility package. It includes Date, Calendar etc 

java.io It is used for Input Output of data. Used for file handling. 

 
Java Program Structure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Documentation Section 

 

Package Statement 

 

Import Statement 

 

Class Definition 

 

Main Method 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
5 

Exception Handling 
 
 Our program can have some errors. The errors are either compile time or run time errors. The 
compile time errors are syntax errors and can be detected by compiler. But the run time errors are 
unnatural and abnormal exception. When exception occurs the program terminates suddenly. To handle 
this exception java supports Exception Handling. 
 

Throwable 
 
 

Error   Exception 
 
 

Runtime Exception  IO Exception 
 
 

Null Pointer Exception Arithmetic Exception . . . . . . . . . . . 
 

 
 In java exception handling is done by using five keywords try, catch, finally, throws and throws. 
 
Try: - Try is a block. The statements that can generate an exception are placed in try block. 

Catch: - If an exception is generated in try block then its object is created and thrown. This object is 
caught in catch block and is handled in catch block. 

Finally: - It is a block. The statement written in finally block are must executed whether the exception is 
generated or not. 

► A try block is created with at least one catch block. 

► No executable statement is allowed between try and catch and also between catch and catch. 

► More than one catch is allowed with single try. 

Syntax: try 
  { 
  } 
  catch1( ) 
  { 
  } 
  catch2( ) 
  { 
  } 
  finally( ) 
  { 
  } 
class Ex1  
{ 

public static void main(String args[])  
{ 

int d = 0; 
int a = 42 / d; 

} 
}



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
6 

Program with Try and Catch 
class Ex2 
{ 

public static void main(String args[]) 
{ 

int d, a; 
try 
{ 

d = 0; 
a = 42 / d; 
System.out.println("This will not be printed."); 

} 
catch (ArithmeticException e) 
{ 

System.out.println("Division by zero."); // Error is + e 
} 
System.out.println("After catch statement."); 

} 
} 
 
Program for Multiple catch 
class MultiCatch 
{ 

public static void main(String args[ ]) 
{ 

try 
{ 

int a = args.length; 
System.out.println("a = " + a); 
int b = 42 / a; 
int c[ ] = { 1 }; 
c[42] = 99; 

}  
catch(ArithmeticException e) 
{ 

System.out.println("Divide by 0: " + e); 
} 
catch(ArrayIndexOutOfBoundsException e) 
{ 

System.out.println("Array index out: " + e); 
} 
System.out.println("After try/catch blocks."); 

} 
} 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
7 

Program for Nested try 
 
class NestTry  
{ 

public static void main(String args[ ]) 
{ 

try  
{ 

int a = args.length; 
int b = 42 / a; 
System.out.println("a = " + a); 
try 
{  

if(a==1)  
   a = a/(a-a); // division by zero 
if(a==2)  
{ 

int c[ ] = { 1 }; 
c[42] = 99; // generate an out-of-bounds exception 

} 
} 
catch(ArrayIndexOutOfBoundsException e)  
{ 

System.out.println("Array index out-of-bounds: " + e); 
} 

} 
catch(ArithmeticException e) 
{ 

System.out.println("Divide by 0: " + e); 
}   

} 
} 
 
Throw: - We have only catching the exceptions which are thrown by Java run-time system. It is also 
possible to throw an exception manually using throw statement. 
 
 throw Throwable_Instance 
 
Here Throwable_instance must be an object of type Throwable or of its subclass. Primitive types such 
as int or char as well as non Throwable classes such as String and Object cannot be used as 
exceptions.  
 
 
Inside the standard package java.lang, Java defines several exception classes. In java two types of 
exceptions Unchecked Exceptions and Checked Exception.  
 
In Unchecked exception the compiler does not check to see if a method handles or throws these 
exceptions. 
 
If a method generate an exception that it cannot handled by itself then that type of error is called 
Checked exception. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
8 

Program for throw. 
class ThrowDemo 
{ 

static void demoproc()  
{ 

try 
{ 

throw new NullPointerException("demo"); 
} 
catch(NullPointerException e) 
{ 

System.out.println("Caught inside demoproc."); 
throw e; // rethrow the exception 

}  
} 
public static void main(String args[]) 
{ 

try  
{ 

demoproc(); 
} 
catch(NullPointerException e) 
{ 

System.out.println("Recaught: " + e); 
} 

}  
} 
 
Program for finally 
class FinallyDemo  
{ 

static void procA()  
{ 

try  
{ 

System.out.println("inside procA"); 
throw new RuntimeException("demo"); 

} 
finally 
{ 

System.out.println("procA's finally"); 
} 

} 
static void procB()  
{ 

try  
{ 

System.out.println("inside procB"); 
return; 

}  
finally  
{ 

System.out.println("procB's finally"); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
9 

} 
} 
public static void main(String args[ ])  
{ 

try  
{ 

procA(); 
} 
catch (Exception e)  
{ 

System.out.println("Exception caught" + e); 
} 
procB(); 

} 
} 
 
Throws: - If a method is capable of causing an exception that is does not handle, then it must specify 
this behavior to calling method. So that they can guard themselves against that exception. It can be 
done by throws keyword. Throws keyword is used with Checked Exceptions. 
 
 type method-name (parameter list) throws exception-list 
 { 
  // Body of method  
 } 
 

Unchecked Exception Meaning 

ArithmeticException Arithmetic Error such as divide by zero 

NullPointerException Invalid use of null pointer 

NumberFormatException Invalid conversion from string to number 

ArrayIndexOutOfBoundException Array index is out of bound. 

 

Checked Exception Meaning 

ClassNotFoundException Class not found 

IllegalAccessException Access to class is denied 

NoSuchFieldException A requested field does not exist 

NoSuchMethodException A requested method does not exist 

 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
10 

class ThrowsDemo 
{ 

static void throwOne() throws IllegalAccessException 
{ 

System.out.println("Inside throwOne."); 
throw new IllegalAccessException("demo"); 

} 
public static void main(String args[ ]) 
{ 

try  
{ 

throwOne(); 
} 
catch (IllegalAccessException e)  
{ 

System.out.println("Caught " + e); 
} 

} 
} 
 

Throw Throws 

throw keyword is used to throw Exception 
from any method or static block in Java 

throws keyword, used in method declaration, 
denoted which Exception can possible be 
thrown by this method. 

throw keyword can be used in switch case in 
Java 

throws keyword cannot be used anywhere 
except on method declaration line. 

throw transfers control to caller 
throws is suggest for information and 
compiler checking. 

It is used for both checked and unchecked 
exception types 

It is used only for checked exception types 

 
 

 

 

 

  

 

http://javarevisited.blogspot.sg/2011/11/static-keyword-method-variable-java.html
http://java67.blogspot.sg/2012/09/how-to-use-java-enum-in-switch-case-example.html
http://java67.blogspot.sg/2012/09/how-to-use-java-enum-in-switch-case-example.html


Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
1 

Multithreaded Programming 
 

A multithreaded program contains two or more parts that can run concurrently. Each part of such 
a program is called a thread, and each thread defines a separate path of execution. A thread is simply 
light weight process or says it is sub process or child process. Multithreading is specialized form of 
Multitasking. 
 
 Now a day’s most of the operating system is working on multitasking mechanism. There are two 
types of multitasking: process based and thread based.  
 
In process based mechanism two or more program runs concurrently on your computer.  

In thread based mechanism the single program is divided into units and all units runs concurrently. This 
single unit is called thread. Means a single program can perform two or more task simultaneously.  
 

Java Thread Life Cycle 
 
 
 
 
 
 
 
 

 

 

 

 

  

 
  start( ) 
 
     yield( ) 

 
 
 
 stop( ) 
 
 
                stop( )   wait( ) resume( ) 
      suspend( )    notify( ) 
 sleep( ) 
 
 

stop( ) 

New 

Ready to 

Run 
Running 

Terminate 

Suspend 

Blocked 

for IO 

Resume

d 

Dead 

Runnable 

(Ready to 

Run) 

Initial (New 

Born) 

Running 

Blocked 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
2 

 Java Thread Model  
 
 Java supports multiple threads to run concurrently which is known as multithreading. This has 
more advantage over single threaded system.  In single thread system if thread is running it fires some 
events and waits for signal. So between two events it stops for some time. At that time lots many CPU 
cycles are wasted and CPU remains free. But with multiple threads if one thread waits for signal mean 
while other threads runs at CPU. So CPU cannot remain free. 
 
class ThreadDemo  
{ 

public static void main(String args[ ])  
{ 

Thread t = Thread.currentThread(); 
System.out.println("Current thread: " + t); 
System.out.println(“Name of thread is : “ + t.getName()); 
t.setName("My Thread"); 
System.out.println("After name change: " + t); 

} 
} 
 
Implementing Thread 
 

There are two ways to create thread in Java 

1) You can implement Thread class 

2) You can extend Runnable interface  

 

Runnable Interface: The easiest way to create a thread is to create a class that implement the 
Runnable interface. To implement Runnable, a class need only implement a single method called run(). 

Inside run( ), you will define the code that constitutes the new thread. After you create a class that 
implements Runnable, you will have to create an object of type Thread from within that class. Now use 
the constructor of thread class 

Thread (Runnable object, String name) 
 
To run the thread you have to use start( ) method which is declared within Thread. Start( ) executes a 
call to run( ) method. 
 
Thread Class:  Second way to create a thread is to extend thread class. The extending thread class 
must override the run( ) method which is the entry point for the new thread. It must also call start( ) 
method to begin execution of the new thread.  
 
Constructors of Thread Class 
 

1) Thread( ) 
2) Thread(String name) 
3) Thread(Runnable object) 
4) Thread(Runnable object, String name) 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
3 

Methods of Thread Class 
 

Method Meaning 

final String getName( ) Obtains thread’s name 

final int getPriority( )  Obtains thread’s priority 

final boolean isAlive( ) Determines if thread is still running 

final void join( ) Wait for thread to terminate 

public void run( ) Entry point for the thread 

static void sleep( ) Suspend thread for period of time 

void start( ) Start a thread by calling its run method. 

final void setName( ) Used to set name of particular thread. 

final void setPriority(int) Used to set priority of particular thread. 

 
Program By extending Thread class 
 
class NewThread extends Thread  
{ 

NewThread()  
{ 

super("Demo Thread"); 
System.out.println("Child thread: " + this); 

} 
public void run()  
{ 

try  
{ 

for(int i = 5; i > 0; i--) 
{ 

System.out.println("Child Thread: " + i); 
Thread.sleep(500); 

} 
}  
catch (InterruptedException e)  
{ 

System.out.println("Child interrupted."); 
} 
System.out.println("Exiting child thread."); 

} 
} 
class ExtendThread  
{ 

public static void main(String args[ ])  
{ 

NewThread  t = new NewThread(); // create a new thread 
t.start(); 
try  
{ 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
4 

for(int i = 5; i > 0; i--)  
{ 

System.out.println("Main Thread: " + i); 
Thread.sleep(2000); 

} 
}  
catch (InterruptedException e)  
{ 

System.out.println("Main thread interrupted."); 
} 
System.out.println("Main thread exiting."); 

} 
} 
 
Program By implementing Runnable Interface 
 
class MyThread implements Runnable 
{ 

MyThread()  
{ 

Thread t = new Thread (this, “My Thread”); 
System.out.println("Child thread: " + this); 
t.start(); 

} 
public void run()  
{ 

try  
{ 

for(int i = 5; i > 0; i--) 
{ 

System.out.println("Child Thread: " + i); 
Thread.sleep(500); 

} 
}  
catch (InterruptedException e)  
{ 

System.out.println("Child interrupted."); 
} 
System.out.println("Exiting child thread."); 

} 
} 
class ImpRun  
{ 

public static void main(String args[ ])  
{ 

MyThread  t = new MyThread(); // create a new thread 
try  
{ 

for(int i = 5; i > 0; i--)  
{ 

System.out.println("Main Thread: " + i); 
Thread.sleep(2000); 

}  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
5 

}  
catch (InterruptedException e)  
{ 

System.out.println("Main thread interrupted."); 
} 
System.out.println("Main thread exiting."); 

} 
} 
Creating Multiple Threads 
 
class NewThread implements Runnable  
{ 

String name; // name of thread 
Thread t; 
NewThread(String threadname)  
{ 

this.name = threadname; 
t = new Thread(this, name); 
System.out.println("New thread created is: " + t); 
t.start(); // Start the thread 

} 
 

public void run()  
{ 

try  
{ 

for(int i = 5; i > 0; i--)  
{ 

System.out.println(“Thread” + name + ": " + i); 
Thread.sleep(1000); 

} 
}  
catch (InterruptedException e)  
{ 

System.out.println(name + "Interrupted"); 
} 
System.out.println(“Thread” + name + " exiting."); 

} 
} 
class MultiThreadDemo  
{ 

public static void main(String args[ ])  
{ 

new NewThread("One"); // start threads 
new NewThread("Two"); 
new NewThread("Three"); 
try  
{ 

Thread.sleep(10000); 
} 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
6 

catch (InterruptedException e)  
{ 

System.out.println("Main thread Interrupted"); 
} 
System.out.println("Main thread exiting."); 

} 
} 
 
isAlive( ) and Join( ) methods 
 
 The execution of main thread must be terminated after all child threads are terminated. So we 
must know which thread is executing and which is not. To do this Java supports two ways to determine 
whether thread has finished or not i.e. isAlive( ) and join( ) 
 
isAlive( ) : This method is used to know whether a thread is running or not. It returns true if the thread is 
still running else it returns false. 
 
Join( ) : This method waits until the thread on which it is called terminates. It will not finish its execution 
until the thread on which it is called completes its execution. 
 

Thread Priorities 
 
 Each thread has its priority which is used by the processor for scheduling. This priority defines 
precedence over other threads. Priority decides which thread would run first and which thread will run 
after.  
 There are two methods associated with priority  

1) setPriority( ) : This method is used to set the priority of a thread. The parameter priority is an 
int value from 1 to 10. 1 is the lowest priority and 10 is the highest priority.  

2) getPriority( ) : This method returns the priority of the invoking thread object.  

 
The thread class has following int constants for thread priorities. These variables are static and final. 
 NORM_PRIORITY : This is default value which is set to 5. 
 MIN_PRIORITY : The minimum priority value is 1. 
 MAX_PRIORITY : The maximum priority value is 10. 
 
class MyThread implements Runnable 
{ 

Thread t; 
String name; 
MyThread(String name) 
{ 

  this.name = name; 
  t = new Thread(this, name); 
  t.start( ); 

} 
 

public void run( ) 
{ 

  for(int i = 1; i<=5; i++) 
  { 
   try 
   { 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
7 

    Thread.sleep(300); 
    System.out.println(“Thread “ + name + “:” + i); 
   } 
   catch(InterruptedException e) 
   { 
    System.out.println(“Thread “ + name + “interrupted”); 
   } 
  } // for loop over 

} // run method over 
} // class over 
 
class ThreadPrio 
{ 
 public  static void main(String args[ ] ) 
 { 
  MyThread t1 = new MyThread(“Slow”); 
  MyThread t2 = new MyThread(“Medium ”); 
  MyThread t3 = new MyThread(“Fast ”); 
 
  System.out.println(“Default Thread Priorities are “ ); 
  System.out.println(“Priority of Thread  “ + t1.t.getName +”=”+t1.t.getPriority()); 
  System.out.println(“Priority of Thread  “ + t2.t.getName +”=”+t2.t.getPriority()); 
  System.out.println(“Priority of Thread  “ + t3.t.getName +”=”+t3.t.getPriority()); 
   
  t1.t.setPriority(Thread.MIN_PRIORITY); 
  t2.t.setPriority(Thread.NORM_PRIORITY); 
  t3.t.setPriority(Thread.MAX_PRIORITY); 
 
  System.out.println(“After changing Priority now Thread Priorities are “ ); 
  System.out.println(“Priority of Thread  “ + t1.t.getName +”=”+t1.t.getPriority()); 
  System.out.println(“Priority of Thread  “ + t2.t.getName +”=”+t2.t.getPriority()); 
  System.out.println(“Priority of Thread  “ + t3.t.getName +”=”+t3.t.getPriority()); 
 } 
} 

 
Synchronization 
    When two or more threads need access to a shared resource, they need 
some way to ensure that the resource will be used by only one thread at a time. The process by which 
this is achieved is called synchronization. Key to synchronization is the concept of the monitor (also 
called a semaphore).  

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread 
can own a monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor. 
All other threads attempting to enter the locked monitor will be suspended until the first thread exits the 
monitor. These other threads are said to be waiting for the monitor. A thread that owns a monitor can 
re-enter the same monitor if it so desires. 
 

Deadlock 

  When two threads have circular dependency on objects a major problem arises. This type 
of error is known as deadlock. In deadlock, one thread is waiting for other thread and other thread is 
waiting for the first thread. Thus both threads go in waiting (blocked) state and cannot continue their 
execution.  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 
8 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
Inter-Thread Communication 
 
 Java includes an elegant inter process communication mechanism via the wait( ), notify( ), and 
notifyAll( ) methods. These methods are implemented as final methods in Object class, so all classes 
have them.  
 
final void wait( ) tells the calling thread to give up the monitor and go to sleep until some 
other thread enters the same monitor and calls notify( ). 
 
final void notify( ) wakes up the first thread that called wait( ) on the same object. 
 
final void notifyAll( ) wakes up all the threads that called wait( ) on the same object. 
The highest priority thread will run first. 
 

Thread 

A 

Thread 

B 

Resource 

1 

Resource 

2 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 1 

Packages Available in Java 
 
 
 
 
 
 
 
 
 
 
 
 
Java.lang  

This is language package. This is default package in Java. You can directly use all its 
classes without importing this package. It contains the following classes. 

 

Object Class Math Class String Class StringBuilder Class 

Thread Class Throwable Class Wrapper Class  

 
It also contains interfaces. It contains Runnable interface 
 
 

1) Object Class 
 

There is one special class Object, defined by Java. All other classes are sub classes of Object. That 
is, Object is a super class of all other classes. This means that a reference variable of type Object can 
refer to an object of any other class. 
 

Method Description 

void finalize( ) Called before an unused object is recycled. 

void notify( ) Resumes execution of a thread waiting on the invoking object. 

void notifyAll( ) Resumes execution of all threads waiting on the invoking object. 

String toString( ) Returns a string that describes the object. 

void wait( ) Waits on another thread of execution. 

Class getClass( ) Obtains the class of an object at run time. 

boolean equals(Object 
object) 

Returns true if the invoking object is equivalent to object. 

 

Java.lang 

Java.util 

 

Java.applet 

 
Java.awt 

 

Java.net 

 

Java.io 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 2 

2) Math Class 
 
This class contains all methods related to mathematical operations. 
 

Method Description 

 
float abs(float f) 
int abs(int i) 

Returns the absolute value of the argument. 

double ceil(double d) 
Returns the smallest integer that is greater than or equal 
to the argument. Returned as a double. 

double floor(double d) 
Returns the largest integer that is less than or equal to 
the argument. Returned as a double. 

long round(double d) 
int round(float f) 

Returns the closest long or int, as indicated by the 
method's return type, to the argument. 

 
float min(float arg1, float arg2) 
int min(int arg1, int arg2) 
 

Returns the smaller of the two arguments. 

float max(float arg1, float arg2) 
int max(int arg1, int arg2) 

Returns the larger of the two arguments. 

double exp(double d) 
Returns the base of the natural logarithms, e, to the 
power of the argument.(e = 2.71 appr) 

double pow(double base, double 
exponent) 

Returns the value of the first argument raised to the 
power of the second argument. 

double sqrt(double d) Returns the square root of the argument 

 

3) String Class 
 

Java implements strings as objects of type String. When you are creating String object you are 
creating a string that cannot be changed. Once a String object has been created you cannot change the 
characters that comprise that string. Each time you need to change the String, a new string object is 
created that contains the modifications. The original string left unchanged.  
 
If you wish to change the original string then Java provides two other String classes: StringBuffer and 
StringBuilder. 
 
Constructor of String Class 
 

1) String( ) 
2) String(char charArray[ ]) 
3) String(char charArray[ ], int start, int length) 

 
e.g.   char name[ ]  = {„J‟,‟a‟,‟v‟,‟a‟}; 

String s1 = new String(name); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 3 

String s2 = “Hello”  String s3 = “World”; 

Method Description Example 

int length( ) Returns the length of this string. int i = s1.length( ); // O/p 3 

char charAt(int index) 
 Returns the char value at the 
specified index. 

ch = s1.charAt(2); // O/p „v‟ 

void getChars(int Start, 
int End, char target[ ], int 
targetStart) 

Copies characters from this string 
into the destination character array 

s2.getChars(2,4,temp,0) // O/p 
llo 

boolean equals(Object 
str) 

It is used to compare two strings for 
equality and returns Boolean value 

s2.equals(s3) // O/p false 

boolean 
equalsIgnoreCase(String 
str) 

It is used to compare two strings for 
equality ignoring case. 

s2.equalsIgnoreCase(“HELLO”);
  // O/p true 

boolean 
startsWith(String str) 

The startsWith( ) method determines 
whether a given String begins with a 
specified string. 

"Foobar".startsWith("Foo")  // 
O/p true 

boolean endsWith(String 
str) 

endsWith( ) determines whether the 
String in question ends with a 
specified string 

"Foobar".endsWith("bar")   // O/p 
true 

int compareTo(String 
str) 

It compares two strings and returns 
zero if both are same return greater 
than zero if first string is big and 
return less than zero if first string is 
small 

s2.compareTo(“Hi”) // O/p -4 

String concat(String str) 
Concatenates the specified string to 
the end of this string 

String s4 = s2.concat(s3);  //O/p 
Hello World 

String replace(char 
original, char replace) 

The replace( ) method replaces all 
occurrences of one character in the 
invoking string with another 
character. 

String s = s2.replace('l', 'w');
  //O/p Hewwo 

String trim( ) 

The trim( ) method returns a copy of 
the invoking string from which any 
leading and trailing whitespace has 
been removed.  

String s = "   Hello World    
".trim(); 
// O/p “Hello World” 

String substring 
(int Index) 
 

Returns a new string that is a 
substring of this string. The substring 
begins with the character at the 
specified index 

"unhappy".substring(2)  // O/p 
"happy" 
"smiles".substring(1, 4) // O/p 
"mile" 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 4 

4) StringBuffer Class 
 
StringBuffer is a peer class of String that provides much of the functionality of strings. With 

StringBuffer class you can create writable and growable strings. With StringBuffer class you can enter 
substring in middle or append at end of the string. The StringBuffer class allocates room of 16 
characters when no buffer size is explicitly allocted.. 

 

 

5) Wrapper Class 
 
 There is a wrapper class for every primitive data type in Java. There are two main reasons for 
wrapper classes (i) To provide a mechanism to “wrap” primitive values in an object so that the primitives 
can be included in activities reserved for objects, like as being added to Collections. (ii) To provide an 
assortment of utility functions for primitives. Most of these functions are related to various conversions: 
converting primitives to and from String. 
 
 
 

Method Description Example 

void setLength(int len) Used to set the length of the string. s1.setLength(5) 

void setCharAt(int 
index,char ch) 

 Used to set character at specified 
index 

s2.setCharAt(1, 'i'); //O/p Hillo 

append(String str) 
It is used to append a string at the 
end of calling string. 

s2.append(“World”)  
//O/p “Hello World” 

insert( int index, String 
str) 

It is used to insert a string or 
character at particular index position. 

S1 = “I Java” 
S1.insert(2,”like  “)  
//O/p I like Java 

reverse( ) 
It is used to reverse the characters 
of string. 

S1 = “Java” 
S1.reverse( )  // O/p avaJ 

delete(int start, int end ) 
This method deletes sequence of 
characters from a string. 

S1 = “This is Java” 
S1.delete(4,6)  // O/p This Java 

Primitive Type Wrapper Class 

byte Byte 

short Short 

int Integer 

float Float 

double Double 

long Long 

char Character 

boolean Boolean  

 The Byte, Short, Integer, Long, Float, 
and Double wrapper classes are all 
subclasses of the Number class. 

 All the wrapper classes are declared 
final. 

Wrapper classes convert numeric 
strings into numeric values.  

The way to store primitive data in an 

object. 

http://en.wikipedia.org/wiki/Subclasses
http://download.oracle.com/javase/7/docs/api/java/lang/Number.html


Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 5 

xxxValue() method 
 

When you need to convert the value of a wrapped numeric to a primitive, use one of the many 
xxxValue() methods. All of the methods in this family are no-arguments methods. Each of the six 
numeric wrapper classes has six methods, so that any numeric wrapper can be converted to any 
primitive numeric type. 
 
Integer iob = new Integer(100); // Auto Boxing 
int i = iob.intValue( );  // Auto Unboxing 
 
Now there will be value 100 in i variable and in iob object. 
 
AutoBoxing is the automatic conversion that the Java compiler makes between the primitive types to 
their corresponding object wrapper classes. For example, converting an int to an Integer, a double to a 
Double, and so on 
 
AutoUnboxing is the automatic conversion that the Java compiler makes between the object wrapper 
class to their corresponding primitive type. For example, converting an Integer to an int. 
 
xxx Parse xxx(String) method 
 

If you do not need to store a value in a wrapper but just want to perform a quick operation on it, 
such as converting the type, you can do it by using an appropriate static method of the appropriate 
wrapper class. For example, all the wrapper classes except Character offer a static method that has the 
following signature: 

 
static <type> parse<Type>(String s) 
 
The <type> may be any of the primitive types except char (byte, short, int, long, float, double, or 
boolean), and the <Type> is the same as <type> with the first letter uppercased; for example: 
 
static int parseInt (String s) 
 
Each of these methods parses the string passed in as a parameter and returns the corresponding 
primitive type. 
 
For example, consider the following code: 
 

String s = "123"; 
int i = Integer.parseInt(s); 

 
The second line will assign an int value of 123 to the int variable i. 
 
Wrapper classes also has some constant variables like 
 
MIN_VALUE - Returns the minimum value that the variable can hold. 
MAX_VALUE - Returns the maximum value that the variable can hold. 
TYPE – It returns Data type name for the class. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 6 

Java.util 
 
 It is utility package. It provides wide range of classes like to manage date and time, calendar etc 
to handle formatted data. It provides Java’s most powerful subsystem: The Collection Framework. 
A collection is an object that represents a group of objects (such as the classic Vector class).  It is used 
to manipulate group of data as a single unit. 
 

Date Class Random  Class Calendar Class Gregorian Class 

Vector Class Stack Class Hash Table Class Stream Tokenizer 

 
 
The Collection Framework is made up of a set of interfaces for working with the groups of objects. 
 

Collection  Enumeration Map Queue 

List Set RandomAccess  

 
 

1) Date Class 
 

The Date class creates an object that represents the current date and time. Its constructors are 
 
(1) Date( ) 
(2) Date(long millisec) 

 
The first constructor creates the object that has the current date and time. The second constructor 

creates the object that has date and time after number of milliseconds from the Epoch(Midnight, 1st 
January, 1970) specified by the parameter. 
 
 
 

 

 

 

 

 

 

 

 

  

Method Description 

long getTime( ) It returns number of milliseconds passed after Epoch. 

boolean before(Date obj) 
Returns true if the invoking date object is earlier then 
parameter object 

boolean after(Date obj) 
Returns true if the invoking date object is after then parameter 
object 

boolean equals(Date 
obj) 

Returns true if both objects have same date and time else 
returns false. 

int compareTo(Date obj) 
Returns zero if both objects are same, returns positive if 
invoking object is later and returns negative if invoking object 
is earlier. 

http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html


Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 7 

Import java.uitl.*; 
class DateEx 
{ 
 public static void main(String args[ ]) 
 { 
  Date today = new Date( ); 
  Date epoch = new Date(0); 
  Date d = new Date(24*60*60*1000); 
  System.out.println(“Today’s date is” + date); 
  System.out.println(“Date of Epoch is” + epoch); 
  System.out.println(“1 day after epoch is” + d); 
 
  long ms = new d.getTime(); 
  System.out.println(“Number of milliseconds “ + ms); 
  System.out.println(“Today is before Epoch?” + today.before(epoch)); 
  System.out.println(“Today is after Epoch?” + today.after(epoch)); 
  System.out.println(“Today is equals Epoch?” + today.equals(epoch)); 
  System.out.println(“Today compare to Epoch?” + today.compareTo(epoch)); 
 } 
} 
 

2) Calendar Class 
 
 This class deals with date and time related functions. This class is abstract class and it has no 
constructors. 
 
 
 
 

 

 

 

 

 

 

 

Component Meaning  Component Meaning 

DATE Specifies date  DAY_OF_MONTH Specifies day of month 

MONTH Specifies month  DAY_OF_YEAR Specifies day of year 

YEAR Specifies year  HOUR Returns hour of time 

DAY_OF_WEEK Specifies day of week   MINUTE Returns min of time. 

Method Description 

Calendar getInstance( ) 
It returns an object of default local and time zone. This 
method is used to create object of calendar class. 

final int get(int Field) Returns the value of the component specified by field 

final int set(int Field), int 
value) 

Sets the value of the component specified by field 

void add(int Field, int 
value) 

If adds value specified to calendar component specified by 
field. 

final void clear( ) It sets all components to zero. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 8 

class CalendarEx 
{ 
 public static void main(String args[ ]) 
 { 
  Calendar cal = Calendar.getInstance( ); 
  System.out.println(“The date is “ + cal.get(Calendar.DATE) + “/”); 
  System.out.println(cal.get(Calendar.MONTH) + 1 + “/” + cal.get(Calendar.YEAR) ); 
 
  cal.set(Calender.MONTH,6); 
  cal.set(Calendar.DATE, 10); 
  System.out.println(“NOW date is “ + cal.get(Calendar.DATE) + “/”); 
  System.out.println(cal.get(Calendar.MONTH) + 1 + “/” + cal.get(Calendar.YEAR) ); 
 
  cal.add(Calender.MONTH, 2); 
  System.out.println(“After adding month is “ + cal.get(Calendar.MONTH) + 1); 
  cal.clear(Calender.MONTH); // clearing month  
 } 
} 
 

3) Gregorian Calendar Class 
 
This class is subclass of Calendar class. This class has four constructors.  
 
 GregorianCalendar( ) 
 GregorianCalendar(int year, int month, int date) 
 GregorianCalendar(int year, int month, int date, int hour, int min) 
 GregorianCalendar(int year, int month, int date, int hour, int min, int sec) 

 

4) Random Class 
 
 This class generates numbers randomly. The process of generating random numbers is done by 
some algorithm. This algorithm is based to some seed value also known as starting value. Thus these 
numbers are also known as pseudorandom numbers. 
It has following constructors 

 Random( ) 
 Random(long seedvalue); 

 

5) Vector Class 
 
 This class creates dynamic array. The simple array you create is of a fixed size, but you can 
create dynamic array using the Vector class. Vector automatically grows when needed. In simple array 
you can store elements of same data types only, but in vector you can have different data type. It has 
following constructors. 

 Vector( ) 
 Vector(int initialSize) 
 Vector(int initialSize, int incrValue) 

 
The first constructor creates a vector of initial size of 10 elements. While in second constructor you can 
define size of vector. But the vector size if doubled when it reaches the initial size specified. To avoid 
this thing use third constructor which also specifies increment value when vector reached its size? 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 9 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

import java.util.*; 
class VectorMethod 
{ 
 public static void main(String args[ ]) 
 { 
  Vector v1 = new Vector( );   // Default size 10 elements 
  Vector v2 = new Vector(5);  // Initial size set to 5 
  Vector v3 = new Vector(5,2); // Initial size 5 and increment value 2 

 
v3.addElement(“Java”); 
v3.addElement(“Computers”); 
v3.addElement(“123”); 
v3.addElement(“92.5”); 
System.out.println(“Vector V3 is” + v3); 
 
System.out.println(“Size of V3 is” + v3.size( )); 
System.out.println(“Capacity  of V3 is” + v3.capacity( )); 
 
v3.insertElementAt(“Happy”, 2); 
v3.removeElementAt(1); 
v3.removeElement(“Happy”); 
System.out.println(“Now after inserting and removing Vector V3 is” + v3); 

 } 
} 

 

Method Description 

final void 
addElement(Object value) 

It is used to add object to the vector. 

final int capacity( ) Returns the capacity of the vector. 

final int size( ) Returns the total element that vector currently holding. 

final void 
insertElementAt(Object 
value, ind index) 

Used to insert element at specified index 

final void 
removeElementAt(int 
index) 

Used to remove element from specified index. 

final void 
removeElement(Object 
value) 

Used to remove a particular element by specifying its value. 

final void 
removeAllElements( ) 

Used to remove all elements from vector. 

final int indexOf(Object 
value) 

It returns index of element specified by the value if found 
else return -1. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Nr. Trikon Bagh, B/h Bus Stand, Rajkot 360001 10 

6) Stack Class 
 

The stack class extends the vector class and it provides all methods of vector class. Stack follows 
LIFO (Last In First Out) System. This class has only one default constructor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Description 

Object push(Object 
element) 

This method is used to insert element in stack. 

Object pop( ) It removes and returns the element at the top of the stack. 

Oject peek( ) It returns the object from the top of stack but does not delete. 

int search(Object 
element) 

It returns position of element in stack if found else -1 

boolean empty( ) Returns true if stack is empty. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 1 

Applet 

There are two types of programs can be developed in java (i) Application Program (ii) Applet 
Program. 

An applet is a GUI (Graphical User Interface) based Java program that runs on the Internet by 
a Java powered browser. An applet is secure as it does not let your computer to be infected by a virus 
or any other malicious program. 

Apple is secure because Java applets are executed in a sandbox by most web browsers, 
preventing them from accessing local data like clipboard or file system 
 
A Simple Applet Program 
 
 Two way to make applet program  

(1) 
import java.awt.*; 
import java.applet.*; 
public class MyApplet extends Applet 
{ 
 public void paint(Graphics g) 
 { 
  g.drawString("Hello World",10,25); 
 } 
} 
 Compile above code in command prompt  javac MyApplet.java 

 
Make New HTML File RunApp.html 
<html> 

<head> 
<title>"Hello"</title> 

</head> 
<body> 

<applet code = "MyApplet.class" height= 300 width = 200> 
</applet> 

<body> 
<html> 
 
Now either run the above HTML file in your browser OR 
Run the appletviewer command in command prompt   appletviewer RunApp.html 
 
(2)  
import java.awt.*; 
import java.applet.*; 
/* 

<applet code = "MyApplet.class" height= 300 width = 200> 
</applet> 

*/ 
public class MyApplet extends Applet 
{ 
 public void paint(Graphics g) 
 { 
  g.drawString("Hello World",10,25); 
 } 
} 

http://en.wikipedia.org/wiki/Sandbox_%28security%29
http://en.wikipedia.org/wiki/Clipboard_%28software%29
http://en.wikipedia.org/wiki/File_system


Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 2 

 Compile above code in command prompt ------ javac MyApplet.java 
 To run the above code in command prompt ---- appletviewer MyApplet.java 

 

Life Cycle Of Applet (5 marks) 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
Each applet has a life cycle. So every time an applet is initialised it goes through four states and 

finally after its execution apple is destroyed. The applet calls methods init( ), start( ), stop( ) and 
destroy( ). These methods are of applet class. In addition to these four methods the paint( ) method of 
Component class of java.awt package. 
 

(1) The init( ) method: This method is the first method to be called by applet. In this method 
initialisation process is done. This method is called only once. 
 

(2) The start( ) method : After init( ) method the start( ) method is called. This method starts the 
applet. This method can be called more than once since it needs to restart each time it is stopped 

 
(3) The stop( ) method : The stop( ) method is called when you minimize the applet window or 

leave the applet page and go to another page. After stopping an applet it can e restarted by start( 
) method. 

 
(4) The destroy( ) method : This method is called when your applet us to be terminated and needs 

to removed from memory. This method is also called once. 
 

(5) The paint( ) method : This method is of Component class in java.awt package. This method is 
called when the applet execution starts or contents is to be redrawn. This method takes 
parameter of type Graphics class. 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 3 

import java.applet.*; 
import java.awt.*; 
/* 
<applet code = AppletMethod height = 100 width = 400> 
</applet> 
/* 
public class AppletMethod extends Applet 
{ 
 String msg; 
 public void init( ) 
 { 
  msg += “init( ) called”; 
 } 

public void start( ) 
 { 
  msg += “start( ) called”; 
 } 

public void stop( ) 
 { 
  msg += “stop( ) called”; 
 } 

public void destroy( ) 
 { 
  msg += “destroy( ) called”; 
 } 

public void paint(Graphics g ) 
 { 
  g.drawString(msg,20,30); 
 } 
} 
 

Some Other Methods of Applet class 
 

Method Description 

URL getCodeBase( ) It returns URL(path) of directory of the applet file 

URL 
getDocumentBase( ) 

It returns URL(path) of HTML document that executes the applet. 

String getParameter 
(String paramName) 

It returns the parameter value of specified parameter. 

boolean isActive( ) It returns true if applet is started else false 

void showStatus 
(String status) 

It displays the status in status bar. 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 4 

Graphics Class 

 
This class is in java.awt package and it contains several methods that can help to perform graphics 
related operations in the applet. These methods include drawing text, line and many other shapes. 
 
1. drawLine(int x1, int y1, int x2, int y2) 

Draw a line between points (x1,y1) and (x2,y2) 
 

2. drawRect (int x, int y, int width, int height)  
     Draws a rectangle, (x,y) are the coordinates of the top left corner, the bottom right corner will be 
at (x+width,y+height). 
 
3. fillRect (int x, int y, int width, int height) 
 Draws filled  rectangle, (x,y) are the coordinates of the top left corner, the bottom right corner will 
be at (x+width,y+height). 
 
4. drawOval (int x, int y, int width, int height)  

Draws an oval bounded by the rectangle specified by these parameters. 
 
5. fillOval (intx, int y, int width, int height) 

Draws filled oval bounded by the rectangle specified by these parameters. 
 
6. drawArc(int x,int y,int width, int height, int startAngle, int arcAngle) 

An arc is formed by drawing an oval between a start angle and a finish angle.  The start angle is 
measured from the positive x-axis and is expressed in degrees.  The arc angle is expressed in degrees 
from the start angle. Angles extend from the center of the bounds box. 
 
7. drawPolygon (int [ ] x, int [ ] y, int N) 

Draws lines connecting the points given by the x and y arrays. Connects the last point to the first 
if they are not already the same point.  
 
8. fillPolygon (int [ ] x, int [ ] y, int N) 

Draws lines connecting the points given by the x and y arrays. Connects the last point to the first 
if they are not already the same point and also fills color. 

   

 
 

 

 

 

 

 

 

  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 5 

import java.applet.*; 
import java.awt.*; 
/*  <applet code = ShapesEx width = 400 height = 500> 
</applet> */ 
public class ShapesEx extends Applet 
{ 

public void paint(Graphics g) 
{ 

g.drawString(“Welcome to shape example of applet”,10,20); 
g.drawString(“This is line”,10,40); 
g.drawLine(120,40,220,40); 
g.drawString(“This is Rectangle”,10,80); 
g.drawRec(120,60,100,50); 
g.drawString(“This is Filled Rectangle”,10,40); 
g.fillRec(120,120,100,50); 
g.drawString(“This is an ellipse”,10,200); 
g.drawOval(120,180,100,50); 
g.drawString(“This is filled oval”,10,280); 
g.fillOval(120,240,75,75); 
g.drawString(“This is Arc”,10,350); 
g.drawArc(120,330,75,75,0,180); 
int x[ ] = {170,220,220,120,120} 
int y[ ] = {380,430,480,480,430}; 
g.drawString(“This is Pentagon”,10,430); 
g.drawPolygon(x,y,5); 

} 
} 
 
The Color Class 
 

This class is in java.awt package and it used to deal with colors. The color class lets you make any 
color you want. Its constructors are 
 
 Color(int red, int green, int blue) // The value must be between 0 to 255 
 Color(int RGBValue) 

 
The Color class has some constants such as black, blue, red, green, white, magenta, cyan, yellow etc. 
You can use these constants like Color.red, Color.yellow etc. 
 
To set the Graphics color there is a method of Graphics class which sets the color of foreground 

void setColor(Color object) 
 

The Font Class 
 

This class allows you to specify the size and type of the font displayed in the applet window. The 
font class is in java.awt package. To create a specific font object following constructor is used. 

 
Font(String name, int style, int size) 
 

The name specify the name of the font e.g. Arial, Verdana, Monotype Corsiva etc 
 
The style specifies the font style. It can be Font.BOLD, Font.ITALIC or Font.PLAIN. If you want your font 
to be both bold and italic then use Font.BOLD | Font.ITALIC. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 6 

The size specify the size of font in points. 
 
After creating a font object you have to set it by the setFont( ) method. 
 
import java.applet.*; 
import java.awt.*; 
/* 
<applet code = “FontColorEx.class” width = 500 height = 100> 
</applet> 
*/ 
public class FontColorEx extends Applet 
{ 

public void paint(Graphics g) 
{ 

Font f1= new Font(“Monotype Corsiva”,Font.BOLD,26); 
g.setFont(f1); 
Color c1 = new Color(255,0,0); 
g.setColor(c1); 
g.drawString(“This is Monotype Corsiva in red color”,10,25); 
Font f2= new Font(“Arial”,Font.ITALIC,48); 
g.setFont(f2); 
Color c2 = new Color(0,255,0); 
g.setColor(c2); 
g.drawString(“This is Arial in green color”,10,55); 
Font f3= new Font(“Times New Roman”,Font.BOLD | Font.ITALIC,48); 
g.setFont(f2); 
g.setColor(Color.Blue); 
g.drawString(“This is Times New Roman in Blue color Bold and Italic”,10,85); 

 } 
} 
 
APPLET tag (5 marks) 

     <APPLET 

                    [CODEBASE = codebaseURL] 

                    CODE = appletFile  

                    [ALT = alternateText] 

                    [NAME = appletInstanceName] 

                    WIDTH = pixels  HEIGHT = pixels 

                    [ALIGN = alignment] 

                    [VSPACE = pixels] 

                    [HSPACE = pixels] 

      > 

    <PARAM NAME = appletAttribute1 VALUE = value> 

    <PARAM NAME = appletAttribute2 VALUE = value> 

    <PARAM NAME = appletAttributeN VALUE = value> 

    </APPLET> 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 7 

1) CODEBASE = codebaseURL 

This OPTIONAL attribute specifies the base URL of the applet--the directory that contains the applet's 
code. If this attribute is not specified, then the document's URL is used. 

2) CODE = appletFile 

This REQUIRED attribute gives the name of the file that contains the applet's compiled Applet subclass. 
This file is relative to the base URL of the applet. It cannot be absolute. One of CODE or OBJECT must 
be present. The value appletFile can be of the form classname.class or of the form 
packagename.classname.class.. 

3) ALT = alternateText 

This OPTIONAL attribute specifies any text that should be displayed if the browser understands the 
APPLET tag but can't run Java applets. 

4) NAME = appletInstanceName 

This OPTIONAL attribute specifies a name for the applet instance, which makes it possible for applets 
on the same page to find (and communicate with) each other. 

5) WIDTH = pixels HEIGHT = pixels 

These REQUIRED attributes give the initial width and height (in pixels) of the applet display area, not 
counting any windows or dialogs that the applet brings up. 

6) ALIGN = alignment 

This OPTIONAL attribute specifies the alignment of the applet. The possible values of this attribute are: 
left, right, top, middle, baseline, bottom. 

7) VSPACE = pixels HSPACE = pixels 

These OPTIONAL attributes specify the number of pixels above and below the applet (VSPACE) and on 
each side of the applet (HSPACE). They're treated the same way as the IMG tag's VSPACE and 
HSPACE attributes. 

<PARAM NAME = appletAttribute1 VALUE = value> 

<PARAM NAME = appletAttribute2 VALUE = value> . . . 

This tag is the only way to specify an applet-specific attribute. Applets access their attributes with the 
getParameter() method. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 8 

Passing Parameters to applet OR PARAM tag (3 marks) 

import java.applet.*;  
import java.awt.*;  
public class appletParameter extends Applet 
{ 
    public void paint(Graphics g) 

{ 
 String msg = getParameter(“msg”); 
 String font = getParameter(“font”); 
 int size = Integer.parseInt(getParameter(“size”)); 
 Font f = new Font(font,Font.BOLD,size); 
 g.setFont(f); 
 g.setColor(Color.green); 
 g.drawString(msg,20,25); 
 } 

} 
 
<HTML> 

<HEAD> 
<TITLE>Passing Parameter in Java Applet</TITLE> 

</HEAD> 
<BODY> 

<APPLET code="appletParameter.class" width="800" height="100"> 
<PARAM  name = "msg " value = "Welcome in Passing parameter in java applet."> 
<PARAM  name = "font " value = Monotype Corsiva> 
<PARAM  name = "size " value = 28> 

</APPLET> 
</BODY> 

</HTML> 
 

 

 

 

 

 

 

  

YOR Classes 
 

Any BCA, BSc.IT, MCA, MSc.IT subject coaching. 

Project Training on VB, C#.Net, ASP.Net, PHP in 5th and 6th Semester 

Competitive Exams like CMAT, Bank Clerk, Bank PO, Post Office, SSC 

Reasonable Fees---Full Syllabus cover with Practical---100% Result of Classes 
 

Vishal Sir (MCA) 9427732231  Naman Sir (MCA) 9408526428 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 1 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 2 

 
Event Handling 

 It is very important feature of applet programming. The classes and interfaces related to event 
handling are contained in the java.awt.event packages. The events are handled by a model known as 
Event Delegation Model. 

Event Delegation Model 
 

  

 invokes 

 

creates 

 register 

 

 

 

    implements 

 

 
 

The event delegation model is a mechanism that handles the generating and processing of 
events. This mechanism works of simple concept. An event source generates as event and it is send to 
one or more listeners. When the listener listens the event it processes the event. To listen to an event 
the listener must be register with the event source. The event delegation model deals with three things 
Events, Source of Event and Event Listener 
 
(1) Event : An event is said to be happened when a phenomenon occurs like the mouse is moved, 

mouse is clicked, a key is pressed etc. In java an event is an object that describes this change of 
state in a source that generated the event. 
 

(2) Source of Event : A source is an object that can generate an event. A source can generate more 
than one type of event. An event source must register itself to its listener in order to listen to its 
event. There are methods for each type of event listener. 
 
To register we have method public void addEventTypeListener(EventTypeListener Object) 
 
To unregister we have method public void removeEventListener(EventTypeListener Object) 

 
(3) Event Listeners : An event listener is one that listens or understand the event. In java an event 

listener is an object. In order to receive the event notification, the event object has to be registered 
with the event and its class must implement all methods of the events listener interface. 

Event 
Source 

Listener 
Object 

Event 
Object 

Listener 
Interface 

Event 

Delegation 

Model 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 3 

Some Event Classes 

 
(1) EventObject : This class is in java.util package and it is super class of all events.  

 
Constructor is EventObject(Event source) here source is an object that generates an event. 
 
Method is Object getSource( ) it returns the event object that generated the event such as Button. 

 
(2) AWTEvent : This class is subclass of EventObject class and it is defined in java.awt package. 
 
 
 

Event Class Description 

ActionEvent 
Generated when a button is pressed, a list item is double-clicked, or a 
menu item is selected. 

AdjustmentEvent  Generated when a scroll bar is manipulated. 

ComponentEvent 
Generated when a component is hidden, moved, resized, or becomes 
visible. 

ContainerEvent Generated when a component is added to or removed from a container 

FocusEvent Generated when a component gains or losses keyboard focus 

InputEvent Abstract super class for all component input event classes. 

ItemEvent 
Generated when a check box or list item is clicked; also occurs when a 
choice selection is made or a checkable menu item is selected or  
deselected. 

KeyEvent Generated when input is received from the keyboard. 

MouseEvent 
Generated when the mouse is dragged, moved, clicked, pressed, or 
released; also generated when the mouse enters or exits a component. 

MouseWheelEvent Generated when the mouse wheel is moved. 

TextEvent Generated when the value of a text area or text field is changed. 

WindowEvent 
Generated when a window is activated, closed, deactivated, opened, or 
quit. 

 
1) ActionEvent: It defines 4 integer constants that can be used to identify any modifiers associated 

with an action event 

 ALT_MASLK 

 CTRL_MASK 

 META_MASK 

 SHIFT_MASK 
There is an integer constant ACTION_PERFORMED (it is used to identify action event) 
 
Command name can be obtained by the getActionCommand( ) method.  Eg. If there are three 

button in application, through this method we can get which button has invoked it. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 4 

Another method is getModifiers( ), which indicates the modifier key(alt, ctrl, meta, shift).  
Another method is getWhen( ), which returns the time at which the event took place 

 
2) AdjustmentEvent: 

It has five types of adjustment events.  It defines integer constants that can be used to identify 
them 

 BLOCK_DECREMENT  when user click inside the scroll bar for decreasing value 

 BLOCK_INCREMENT  when user click inside the scroll bar for increasing value 

 TRACK    when slider was dragged 

 UNIT_DECREMENT  the button at the end of scroll bar clicked to decrease value 

 UNIT_INCREMENT  the button at the end of scroll bar clicked to increase value 
 
There is a integer constant, ADJUSTMENT_VALUE_CHANGED, which indicates that a 

change has occurred 
 
The method getAdjustable() method returns the object that generated the event.  The 

getAdjustmentType() returns type of adjustment event.  The getValue() returns amount of 
adjustment. 

 
3) ComponentEvent 

There are 4 types of component events and 4 integer constants 

 COMPONENT_HIDDEN component becomes hidden 

 COMPONENT_MOVED component moves 

 COMPONENT_RESIZED component resized 

 COMPONENT_SHOWN component becomes visible 
 
It is the super class of ContainerEvent, FocusEvent, KeyEvent, MouseEvent, WindowEvent 

class 
The getComponent( ) method returns the component that generated the event 
 

4) ContainerEvent: 
There are two types of container events.  It defines two types of constants 

 COMPONENT_ADDED   

 COMPONENT_REMOVED 
 
The getContainer() gives reference to the container that generated this event.  The getChild( ) 

method returns a reference to the component that was added or removed 
 

5) FocusEvent 
There are two integer constants 

 FOCUS_GAINED 

 FOCUS_LOST 
 
The getOppositeComponent( ) determines the <type>.  The isTemporary( ) method indicates 

if this focus change is temporary.  It returns true if temporary else false. 
 

6) ItemEvent 
There are two integer constants 

 DESELECTED 

 SELECTED 
 
It has other constant  ITEM_STATE_CHANGED. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 5 

The getItem() method used to obtain a reference to the item that generated an event.  The 
getItemSelectable() method can be used to obtain a reference to the ItemSelectable object that 
genereated an event  the getStateChange() returns the state change for the event 

 
7) MouseEvent 

There are 8 integer constants defined.   
MOUSE_CLICKED 
MOUSE_DRAGGED 
MOUSE_ENTERED 
MOUSE_EXITED 
MOUSE_MOVED 
MOUSE_PRESSED 
MOUSE_RELEASED 
MOUSE_WHEEL 
 
the getX() and getY() are used to find co-ordinates at the time of click.  The getPoint() returns 

co-ordinates of the mouse.   The translatePoint(int x, int y) changes the location of the event.   The 
getClickCount() returns no. of mouse click.  The isPopupTrigger() tests if this event cause a pop-
up menu to appear on the platform.  The getButton() returns the button that caused the event.   

 
8) KeyEvent  

There are 3 types of key events, identified by integer constants 

 KEY_PRESSED 

 KEY_RELEASED 

 KEY_TYPED 
There are 8 integer constants 

 VK_0  TO VK_9 

 VK_A TO VK_Z 

 VK_ENTER 

 VK_ESCAPTE 

 VK_CANCEL 

 VK_UP 

 VK_DOWN 

 VK_LEFT 

 VK_RIGHT 

 VK_PAGE_DOWN 

 VK_PAGE_UP 

 VK_SHIFT 

 VK_ALT 

 VK_CONTROL 
 
For KEY_TYPED events, code will be VK_UNDEFINED. 
The getKeyChar() returns the character that was entered.  The getKeyCode() returns the 

keycode. 
 
9) TextEvent 

It defines integer constant TEXT_VALUE_CHANGED 
The object does not include the character currently in the text component that generated the 

event. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 6 

10) WindowEvent 
There are 10 types of window events.   

 WINDOW_ACTIVATED 

 WINDOW_CLOSED 

 WINDOW_CLOSING 

 WINDOW_DEACIVATED 

 WINDOW_DEICONIFIED 

 WINDOW_GAINED_FOCUS 

 WINDOW_ICONIFIED 

 WINDOW_LOST_FOCUS 

 WINDOW_OPENED 

 WINDOW_STATE_CHANGED 
 
The methods are: 
getOppositeWindow(), getOldState(), getNewState() 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 7 

The Event Listener Interfaces 
 

Event Listener Interface Event Listener Methods 

ActionListener actionPerformed(ActionEvent evt) 

AdjustmentListener adjustmentValueChanged(AjustmentEvent evt) 

ItemListener itemStateChanged(ItemEvent evt) 

TextListener textValueChanged(TextEvent evt) 

ComponentListener 

componentHidden(ComponentEvent evt), 
componentMoved(ComponentEvent evt), 
componentResized(ComponentEvent evt), 
componentShown(ComponentEvent evt) 

ContainerListener 
componentAdded(ContainerEvent evt), 
componentRemoved(ContainerEvent evt) 

FocusListener 
focusGained(FocusEvent evt),  
focusLost(FocusEvent evt) 

KeyListener 
keyPressed(KeyEvent evt),  
keyReleased(KeyEvent evt),  
keyTyped(KeyEvent evt) 

MouseListener 

mouseClicked(MouseEvent evt), 
mouseEntered(MouseEvent evt),  
mouseExited(MouseEvent evt), 
mousePressed(MouseEvent evt), 
mouseReleased(MouseEvent evt) 

MouseMotionListener 
mouseDragged(MouseEvent evt), 
mouseMoved(MouseEvent evt) 

WindowListener 

windowActivated(WindowEvent evt), 
windowClosed(WindowEvent evt), 
windowClosing(WindowEvent evt), 
windowDeactivated(WindowEvent evt), 
windowDeiconified(WindowEvent evt), 
windowIconified(WindowEvent evt), 
windowOpened(WindowEvent evt) 

 
// Demonstrate the Mouse Handler 
import java.awt.*; 
import java.awt.event.*; 
import java.applet.*; 
/* 
<applet code="MouseEvents" width=300 height=100> 
</applet> 
*/ 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 8 

public class MouseEvents extends Applet implements MouseListener  
{ 

String msg = ""; 
int mouseX = 0, mouseY = 0; // coordinates of mouse 
public void init( ) 
{ 

addMouseListener(this); 
setBackground(Color.yellow); 

} 
// Handle mouse clicked. 
public void mouseClicked(MouseEvent me) 
{ 

// save coordinates 
mouseX = 0; 
mouseY = 10; 
setBackground(Color.red); 
msg = "Mouse clicked."; 
repaint(); 

} 
// Handle mouse entered. 
public void mouseEntered(MouseEvent me) 
{ 

// save  coordinates 
mouseX = 0; 
mouseY = 10;  
setBackground(Color.blue); 
msg = "Mouse entered."; 
repaint(); 

} 
// Handle mouse exited. 
public void mouseExited(MouseEvent me) 
{ 

// save coordinates 
mouseX = 0; 
mouseY = 10; 
setBackground(Color.green); 
msg = "Mouse exited."; 
repaint(); 

} 
public void mousePressed(MouseEvent me) 
{ 

// save coordinates 
mouseX = me.getX(); 
mouseY = me.getY(); 
msg = "Down"; 
repaint(); 

} 
// Handle button released. 
public void mouseReleased(MouseEvent me) 
{ 

// save coordinates 
mouseX = me.getX(); 
mouseY = me.getY(); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 9 

msg = "Up"; 
repaint(); 

} 
 
// Display msg in applet window at current X,Y location. 
public void paint(Graphics g) 
{ 

g.drawString(msg, mouseX, mouseY); 
} 

} 
 
// Demonstrate the key event handlers. 
import java.awt.*; 
import java.awt.event.*; 
import java.applet.*; 
/* 
<applet code="SimpleKey" width=300 height=100> 
</applet> 
*/ 
public class SimpleKey extends Applet implements KeyListener 
{ 

String msg = ""; 
int X = 10, Y = 20; // output coordinates 
public void init( ) 
{ 

addKeyListener(this); 
requestFocus(); // request input focus 

} 
public void keyPressed(KeyEvent ke) 
{ 

showStatus("Key Down"); 
setBackground(Color.yellow); 

} 
public void keyReleased(KeyEvent ke) 
{ 

showStatus("Key Up"); 
setBackground(Color.blue); 

} 
public void keyTyped(KeyEvent ke) 
{ 

msg += ke.getKeyChar(); 
setBackground(Color.red); 
repaint(); 

} 
// Display keystrokes. 
public void paint(Graphics g) 
{ 

g.drawString(msg, X, Y); 
} 

} 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 10 

Adapter Classes 
 

Java provides a special feature, called an adapter class that can simplify the creation of event 
handlers in certain situations. An adapter class provides an empty implementation of all methods in an 
event listener interface. Adapter classes are useful when you want to receive and process only some of 
the events that are handled by a particular event listener interface. You can define a new class to act as 
an event listener by extending one of the adapter classes and implementing only those events in which 
you are interested. 
 

For example MouseListener interface has 5 methods but you want to use only two methods of 
that interface. If you are implementing MouseListener interface then you have to override all methods. 
But if you are using its adapter class MouseAdapter then you can override only those methods which 
you want, not all. 

 
 

Event Listener interface Event Listener Adapter 

ComponentListener ComponentAdapter 

ContainerListener ContainerAdapter 

FocusListener FocusAdapter 

KeyListener KeyAdapter 

MouseListener MouseAdapter 

MouseMotionListener MouseMotionAdapter 

WindowListener WindowAdapter 

 
 

YOR Classes 
 

Any BCA, BSc.IT, MCA, MSc.IT subject coaching. 

Project Training on VB, C#.Net, ASP.Net, PHP in 5th and 6th Semester 

Competitive Exams like CMAT, Bank Clerk, Bank PO, Post Office, SSC 

Reasonable Fees---Full Syllabus cover with Practical---100% Result of Classes 
 

Vishal Sir (MCA) 9427732231  Naman Sir (MCA) 9408526428 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 1 

Input / Output 
 

Streams  
  

A stream is a path or a medium along which the data flows. So the data passes through streams 
from source to destination. The source is called input and the destination is called output of program. 
The input stream can be keyboard, mouse or file and the output stream can be monitor, printer or file. 
 
  
  

 

  Input Stream 

 

  Output Stream 

 

 

 

There are two main categories of stream 

1) Character Stream 
2) Byte Stream 

 
 

 
 
 
 

 

 

 

 
Character Stream:  
 

The character stream manipulates the data as characters. A character in java is of 16 bits. Thus 
the character stream classes can work with 16 bit Unicode characters. The main two classes of 
character stream are Reader and Writer. 
 
Byte Stream 
 
 The byte stream classes manipulate data byte by byte. A byte in java is of 8 bits. Thus a byte 
stream objects reads and writes data in binary form. The main two classes of byte stream are 
InputStream and OutputStream 

 
Input 

Device / 

File 

Program 

Output 

Device/ 

File 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 2 

 
 

 

 

 

 

 

 

 

 

Reader Class 

 The Reader class is abstract class, so we cannot create its object. Its subclasses are used to 
read character from file. The methods of Reader class are as follows. 
 

(1) int read( ) : It reads the character from stream and returns integer value of that character. It 
returns -1 if EOF reached. 
 

(2) abstract void close( ) : it closes the input source. If one tries to read a character after closing a 
file it will generate IOException. 

 
(3) boolean ready( ) : It returns true if the next input is ready otherwise false.  

 
(4) long skip(long numOfChars) : In this numOfChars will be skipped. It returns the number of 

characters actually skipped. 

 
InputStreamReader Class 
 
 This class is the sub class of Reader class. It reads a byte from the input stream i.e. file and 
converts it to the character. 
 

FileReader Class 
 
 This class is used to read characters from a file. It is a subclass of InputStreamReader class. Its 
constructors are 

 FileReader(String path) 
 Filereader(File obj) 

import java.io.*; 
class FileReadEx 
{ 

public static void main(String args[ ]) 
{ 
 try 
 { 
  FileReader f = new FileReader(args[0]); 

Character Stream 

Reader Writer 

BufferedReader InputStreamReader 

FileReader 

BufferedWriter OutputStreamWriter 

FileWriter 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 3 

  System.out.println(“The content of file is “); 
  int ch; 
  do 
  { 
   ch = f.read( ); 
   if(ch != -1) 
    System.out.println((char)ch); 
  }while(ch!=-1); 
 } 
 catch(ArrayIndexOutOfBoundsException e) 
 { 
  System.out.println(“Please five file name as command line argument”); 
 } 
 catch(FileNotFoundException e) 
 { 
  System.out.println(“File not found”); 
 } 
 catch(IOException e) 
 { 
  System.out.println(“IO exception generated”); 
 } 
} 

} 
 

BufferedReader Class 
 
 This class is also used to take input from stream but it increases performance by using buffer to 
take input. The input first stored in buffer and then data is transferred from the buffer. Its constructors 
are 
 BufferedReader(Reader obj) 
 BufferedReader(Reader obj, int bufferSize) 
 
The BufferedReader class adds a method readLine( ) which reads a line of characters from the 
keyboard. The reading of data is terminated when new line is encountered.  
 
import java.io.*; 
class ReadLineEx 
{ 

public static void main(String args[ ]) 
{ 
 String name = “ ”; 
 try 
 { 
  InputStreamReader  isr  = new InputStreamReader(System.in); 
  BufferedReader br = new BufferedReader(isr) 
  System.out.println(“Please enter your name “); 
  name = br.readLine( ); 
  System.out.println(“hello : “ + name + “  how are you”); 
 } 
 catch(IOException e) 
 { 
  System.out.println(“IO exception generated”); 
 } 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 4 

} 
} 
 

Writer Class 
 
 This class is abstract class so we cannot create is object. Its subclasses are used to perform all 
output related tasks on a file. The methods of Writer class are as follows. 
 

(1) void write(int ch) : It writes a single character in the output stream. 
 

(2) void write(char buffer[ ]) : It writes a content of character array buffer to output stream. 
 

(3) void write(String str) : It writes a string to output stream. 
 

(4) void write(String str, int start, int numOfChars) : It writes numOfChars starting from the 
startindex of the string str to the output string. 
 

(5) abstract void close( ) : It closes the output source. If one tries to write a character after closing 
a file it will generate IOException. 

 
(6) abstract void flush( ) : It flushes the output buffer. 

 

OutputStreamReader Class 
 
 This class is the subclass of writer class. It converts characters to bytes and then writes them to 
output stream. 
 

FileWriter Class 
 
 This class is used to write characters in a file. Its constructors are 
 
 FileWriter(File object) 
 FileWriter(String path) 
 FileWriter(String path, boolean append) 

 
import java.io.*; 
class FileWriterEx 
{ 

public static void main(String args[ ]) 
{ 
 String str = “God is great”; 
 char buffer[ ] = {„a‟,‟b‟,‟c‟,‟d‟}; 
 try 
 { 
  FileWriter f = new FileWriter(“file1.txt”); 
  // BufferedWriter b = new BufferedWriter(f); 
  //b.write(str); 
  f.write(str); 
  f.write(buffer); 
  f.close( ); 
 } 
  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 5 

catch(IOException e) 
 { 
  System.out.println(“I/O exception occurred”); 
 } 
System.out.println(“The data is successfully written in file”); 
} 

} 
 

BufferedWriter Class 
 
 This class is the subclass of Writer class. It writes the characters into file using buffer so that the 
performance is increased. Its constructors are 
 

 BufferedWriter(Writer obj) 
 BufferedWriter(Writer obj, int bufferSize) 

 
For example see program for FileWriter class. 
 

PrintWriter Class 
 
 This class is used to display values of simple data types. It has methods to display data such as 
print( ) and println( ). 
 
 PrintWriter p = new PrintWriter(System.out); 
 p.println(“Hello World”); 
 
 

Byte Stream 
  

FilterInputStream 

 

FilterOutputStream 

 

BufferedOutputStrea

m 

 

DataOutputStream 

 

BufferedInputStream 

 

DataInputStream 

 

PrintStream 

Byte Stream 

InputStream OutputStream 

 

FileInputStream 

F 

ObjectInputStream 

 

FileOutputStream 

 

ObjectOutputStream 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 6 

FileInputStream Class 
 
 This class is used to read bytes from a file. It is a subclass of InputStream class. Its constructors 
are 

 FileInputStream(String path) 
 FileInputStream (File obj) 

 
import java.io.*; 
class FileInputStreamEx 
{ 

public static void main(String args[ ]) 
{ 
 try 
 { 
  FileInputStream f = new FileInputStream(args[0]); 
  System.out.println(“The content of file is “); 
  int ch; 
  do 
  { 
   ch = f.read( ); 
   if(ch != -1) 
    System.out.println((char)ch); 
  }while(ch!=-1); 
 } 
 catch(ArrayIndexOutOfBoundsException e) 
 { 
  System.out.println(“Please five file name as command line argument”); 
 } 
 catch(FileNotFoundException e) 
 { 
  System.out.println(“File not found”); 
 } 
 catch(IOException e) 
 { 
  System.out.println(“IO exception generated”); 
 } 
} 

} 
 

BufferedInputStream Class 
 
 This class is sub class of FilterInputStream. This class is also used to take input from stream but 
it increases performance by using buffer to take input. The input first stored in buffer and then data is 
transferred from the buffer. Its constructors are 
 
 BufferedInputStream (InputStream obj) 
 BufferedInputStream (InputStream obj, int bufferSize) 
 
  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 7 

import java.io.*; 
class BufferedInputEx 
{ 

public static void main(String args[ ]) 
{ 
 try 
 { 
  FileInputStream f  = new FileInputStream (file1.txt); 
  BufferedInputStream  br = new BufferedReader(f) 
  System.out.println(“File content is “); 
  int ch; 
  do 
  { 
   ch = br.read( ); 
   if(ch != -1) 
    System.out.println((char)ch); 
  }while(ch!=-1); 
 } 
 catch(FileNotFoundException e) 
 { 
  System.out.println(“File not found”); 
 } 
 catch(IOException e) 
 { 
  System.out.println(“IO exception generated”); 
 } 
} 

} 

 
DataInputStream Class 
 
 This class is the sub class of FilterInputStream class. This class allows reading of Java Primitive 
data value. It implements DataInput interface. 
 
Its constructors is  DataInputStream (InputStream obj) 
 
Some Methods of DataInput interface are 
 

(1) boolean readBoolean( ) 

(2) byte readByte( ) 

(3) char readChar( ) 

(4) short readShort( ) 

(5) int readInt( ) 

(6) float readFloat( ) 

(7) long readLong( ) 

(8) double readDouble( ) 

  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 8 

ObjectInputStream   

 
 ObjectInputStream is the sub class InputStream class. This class is used to read Object from the 
file. It has readObject( ) method to read the data of object from file. 
 
Its contructor  ObjectInputStream(InputStream obj) 
 

ObjectOutputStream 

 
 ObjectOutputStream is the sub class OutputStream class. This class is used to write Object to 
the file. It has writeObject( ) method to write the data of object to file. 
 
Its contructor  ObjectOutputStream(InputStream obj) 
 
import java.io.*; 
class ObjectEx 
{ 
 public static void main(String args[ ]) 
 { 
  try 
  { 
   Student  s1 = new Student(“XYZ”, 24, 75.45); 
   System.out.println(“Student 1 : \n” + s1); 
   FileOutputStream f = new FileOutputStream(“file5.txt”); 
   ObjectOutputStream  o = new ObjectOutputStream(f); 
   o.writeObject(s1); 
   o.flush( ); 
   o.close( ); 
  } 
  catch(Exception e) 
  { 
   System.out.println(“Error occurred”); 
  } 
  try 
  { 
   FileInputStream f = new FileOutputStream(“file5.txt”); 
   ObjectInputStream  o = new ObjectInputStream(f); 
   s2 = (Student)o.readObject(s1); 
   o.close( ); 
   System.out.println(“Student 2 : \n” + s2); 
  } 
  catch(Exception e) 
  { 
   System.out.println(“Error occurred”); 
  } 
 } 
} 
class Student implements Serializable 
{ 
 String name; 
 int rollno; 
 double per; 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 9 

 public Student(String name, int rollno, double per) 
 { 
  this.name = name; 
  this.rollno = rollno; 
  this.per = per; 
 } 
 public String toString( ) 
 { 
  return “Name = “ + name + “\n Roll No = “ + rollno + “\n Percentage = “ + per; 
 } 
} 
 
How to Get Input From Keyboard 
 
import java.io.*; 
class ReadLineEx 
{ 

public static void main(String args[ ]) 
{ 

  int num1,num2,num3; 
  try 
  { 
   InputStreamReader  isr  = new InputStreamReader(System.in); 
   BufferedReader br = new BufferedReader(isr); 
   System.out.println("Please Enter First number"); 
   num1 = Integer.parseInt(br.readLine( )); 
   System.out.println("Please Enter Second number"); 
   num2 = Integer.parseInt(br.readLine( )); 
   num3 = num1+num2; 
   System.out.println("Addition is : " + num3); 
  } 
  catch(IOException e) 
  { 
   System.out.println("IO exception generated"); 
  } 

} 
} 
 
How to Copy one file to another file 
 
import java.io.*; 
class FileCopyEx 
{ 

public static void main(String args[ ]) throws IOException 
{ 
 int I; 
 FileInputStream srcFile; 
 FileOutputStream destFile; 
 try 
 { 
  try 
  { 

    srcFile = new FileInputStream(args[0]); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 10 

  } 
  catch(FileNOtFoundException e) 
  { 
   System.out.println(“Source file not found”); 
   return; 
  } 
  try 
  { 

    destFile = new FileOutputStream(args[1]); 
  } 
  catch(FileNOtFoundException e) 
  { 
   System.out.println(“Source file not found”); 
   return; 
  } 
 } 
 catch(ArrayIndexOutOfBoundsException e) 
 { 

   System.out.println(“Please give both file names”); 
  return; 
 } 

try 
{ 

  do 
  { 
   i = srcFile.read( ); 
   if(i != -1) 
    destFile.write(i); 
  }while(i != -1) 

}  
catch(IOException e) 
{ 

  System.out.println(“ IO error generated”); 
}  
srcFile.close( ); 
destFile.close( ); 

 
System.out.println(“The file is copied”); 

} 
} 
 

RandomAccessFile Class 
 
 This class is used to read or write data from a file randomly. This class is not a subclass of 
InputStream or OutputStream but it is directly the subclass of Object class. Using this class you can 
access file randomly. Its constructors are 
 
 RandomAccessFile(File obj, String mode); 
 RandomAccessFile(String filename, String mode); 
 
Here obj is the object of file class and filename is the name of the file. The mode is the access mode of 
the file. If the mode is “r” then read operation and if mode is “rw” then read and write both can be done. 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 11 

Its methods are 
 

(1) void seek(long NumOfByte) : It move the file pointer to desired location. 

(2) int read( ) : Used to read a byte from  the input stream. 

(3) long getFilePointer( ) : It returns the current position of file pointer. 

(4) long length( ) : It returns length of the file in byte. 

(5) void setLength(long newLength) : Used to set length of file. 

(6) void close( ) : It closes the file. 

 
import java.io.*; 
class RandomEx 
{ 
 public static void main(String args[ ]) 
 { 
  try 
  { 
   RandomAccessFile r = new RandomAccessFile(“file.txt”,”rw”); 
   System.out.println(“writing in file”); 
   for(int i = 65; i<=77; i++) 
    r.write(i); 
   r.seek(0) 
   System.out.println(“The first character is “ + (char)r.read( )); 

r.seek(r.length( ) -1); 
System.out.println(“The last character is “ + (char)r.read( )); 
System.out.println(“The size of file is + r.length( )); 
r.setLength(100); 
System.out.println(“Now The size of file is + r.length( )); 
r.close( ); 

  } 
  catch(IOException e) 
  { 
   System.out.println(“Error occurred”); 
  } 
 } 
} 
 

File Class 
 
 This class is used to get information of a file such as length of file, is permission, directory path 
etc. You can also create a directory; delete file and directory using a file class. It has following 
constructors   

 File(String path) 
 File(String directoryPath, String filename) 
 File(File obj, String filename) 

 
The methods of file class are as below 
 

1. Boolean exist ()      - does the file exist return true if exists. 
2. Boolean canWrite( )  -return true if a file be written to else false. 
3. Boolean canRead( )  - retuen true if a file can be read else false. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 12 

4. Boolean isFile( )  - does it represent a file or not 
5. Boolean isDirectory( ) - directory or not a directory 
6. String getName ( ) - get the name of the file (no path included) 
7. String getPath ( ) - get the abstract file path 
8. String getAbsolutePath ( ) - get the absolute file path 
9. long length( ) – It returns length of the file in bytes. 

 
 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 1 

Swing 
 

Swing is a set of classes that provides more powerful and flexible GUI components than AWT. 
There was a need of better approach than AWT. The solution was SWING. In this we have to study 
javax.swing package. The javax package is the extension package. This package contains lots of 
classes for swing components.  
 
Swing is Built-On the AWT 
 
 Swing does not replace AWT; instead Swing is built on the foundation of the AWT. So the basic 
Swing also uses the same event handling mechanism as the AWT. So to understand Swing the basic 
knowledge of AWT and event handling is required. 
 

AWT v/s Swing 
 

AWT Swing 

Components are heavyweight Components are lightweight 

Component’s look is depended on OS Component’s look do no depend on OS 

Look and Feel of each component is Fixed Look and Feel of each component is not fixed 

Look of components could not be changed 
easily 

Look of components could be changed easily 
without affecting the code 

 

The MVC Connection 
 
In general, a visual component is a combination of three aspects 
 

 The way that the component looks when shown on screen 

 The way that the component reacts to the user 

 The state information associated with the component 

In MVC (Model View Controller) terminology, the model corresponds to the state information 
associated with the component. The view determined how the component is displayed on screen. The 
controller determines how the component reacts to user. For example when the user clicks a check box, 
the controller reacts by changing the model to reflect the user’s choice. This then results in the view 
being updated. The component is separated into model, view and controller for better programming. 
 

The Container Class 
 
 The java.awt.Container class is the sub class of the java.awt.Component class. This container 
can contain any components within it. These components are arranged by layout managers.  
 
 We must extend JApplet class to use Swing components. The JApplet provides the support for 
various panes such as content pane, the glass pane etc. To add a component in the JApplet you have 
to use add ( ) method by a content pane object. 
Container getContentPane( ) method is used  to get content pane. To add component in this pane use 
void add(componentObj) 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 2 

Concepts of Layouts (Layout Managers) 
 
 The layout manager decides how the control should be arranged or positioned within a 
container or a window. In some languages like Visual Basics you can arrange your controls as you like 
using form designer. But in Java there is no such form designer, but you have to write the code to 
arrange the control where you want them. 
 
 To set any layout we can use void setLayout(LayoutManager obj) method. The obj is an object 

of the specified layout manager. 
 If no layout is set by the setLayout( ) method the default layout manager is used which is 

FlowLayout. 
 

(1) FlowLayout : The FlowLayout is the default layout manager i.e. if no layout manager is set by the 
setLayout( ) method, this layout is used to arrange the controls. In this layout manager the components 
are arranged from the upper-left corner to the right side edge. When there is no space for component it 
is arranged from the next line. 

The constructors for this layout are 
 FlowLayout( ) 
 FlowLayout(int align) 
 FlowLayout(int align, hspace, vspace) 

 
Here, the align parameter specifies the alignment for the component. It can be 
FlowLayout.CENTER(default), FlowLayout.LEFT and  FlowLayout.RIGHT constants. 

 
The vspace and hspace specifies the horizontal and vertical spaces between the components. Default 
is 5 pixels. 
 
 
 
 
 
 
(2) BorderLayout : The BorderLayout arrange the components in five portions. These portions are the 
four edges of the window and the fifth is the center part. These portions are specified by the following 
constants: 

BorderLayout.NORTH : The top edge of the window 
BorderLayout.SOUTH : The bottom edge of the window 
BorderLayout.EAST : The right side edge of the window 
BorderLayout.WEST : The left side edge of the window 
BorderLayout.CENTER : The center portion of the window 

 
The constructors are  BorderLayout( ) 
     BorderLayout (int hspace, int vspace) 
 

The component can be added by void add(Component obj, Object where) 
 
Use of Insets 
 The insets class provides the facility to give some space between the edges of the applet window 
and your components. To do so you have to override the getInsets( ) method defined by the Container 
class.  
 Constructor for this class is  Insets(int top, int left, int bottom, int right) 
 Method you must override is  Insets getInsets( ) 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
(3) CardLayout : This layout has some special capabilities that other layout do not have. The 
CardLayout creates a layout like the playing card. Assume more than one card on one another. Here 
only the card on the top is visible at a time. But you can shuffle the card to see other cards. Same way 
the CardLayout can switch among several panels. The constructors are 
 

 CardLayout( ) 
 CardLayout(int hspace, int vspace) 

 
To add components or panels to the card layout panel void add(Component panelObj, Object 
panelname) method is used. 
Here the panelname is the name of the panel object. 
Now after defining the panel object you can show or shuffle the card panels by one of the following 

 
 void show(Container panelObj, String panelName) : it shows the panel specified by the 

panelObj and whose name is panelName 

 void first(Container panelObj) : It shows first panel or card 

 void last(Container panelObj) : It shows last panel or card 

 void next(Container panelObj) : It shows next panel or card 

 void previous(Container panelObj) : It shows previous panel or card 

 
 
 
 
 
 
 
 
(4) GridLayout : It creates layout which has a grid of rows and columns. The constructors are 
 

 GridLayout( ) 
 GridLayout(int rows, int cols) 
 GridLayout(int rows, int cols, int hspace, int vspace) 

 
The first constructor is default constructor which creates only one column grid. While in other two you 
can specify the number of rows and columns. Hspace and vspace specifies horizontal and vertical 
space between the components. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 4 

 
 
 
 
 
 
 
 
 
 
 
 
(5) GridBagLayout : The GridBagLayout is very flexible layout manager. It is an extension of 
GridLayout that provides some more features than the GridLayout. In the GridLayout all the cells have 
same height and width which is not necessary in GridBagLayout. Here you can have cells of arbitrary 
width and height. This can be done by specifying constraints. To specify constraints you have to create 
object of GridBagConstraints. 
Its constructor is  GridBagConstraints( ) 
   GridBagLayout( ) 

You can set the following GridBagConstraints instance variables: 

gridx, gridy 
Specify the row and column at the upper left of the component. The leftmost column has address 
gridx=0 and the top row has address gridy=0. Use GridBagConstraints.RELATIVE (the default 
value) to specify that the component be placed just to the right of (for gridx) or just below (for 
gridy) the component that was added to the container just before this component was added. We 
recommend specifying the gridx and gridy values for each component rather than just using 
GridBagConstraints.RELATIVE; this tends to result in more predictable layouts. 
 

gridwidth, gridheight 
Specify the number of columns (for gridwidth) or rows (for gridheight) in the component's display 
area. These constraints specify the number of cells the component uses, not the number of 
pixels it uses. The default value is 1. Use GridBagConstraints.REMAINDER to specify that the 
component be the last one in its row (for gridwidth) or column (for gridheight). Use 
GridBagConstraints.RELATIVE to specify that the component be the next to last one in its row 
(for gridwidth) or column (for gridheight). We recommend specifying the gridwidth and gridheight 
values for each component rather than just using GridBagConstraints.RELATIVE and 
GridBagConstraints.REMAINDER; this tends to result in more predictable layouts.  

 
fill 

Used when the component's display area is larger than the component's requested size to 
determine whether and how to resize the component. Valid values (defined as 
GridBagConstraints constants) include NONE (the default), HORIZONTAL (make the component 
wide enough to fill its display area horizontally, but do not change its height), VERTICAL (make 
the component tall enough to fill its display area vertically, but do not change its width), and 
BOTH (make the component fill its display area entirely). 
 

ipadx, ipady 
Specifies the internal padding: how much to add to the size of the component. The default value 
is zero. The width of the component will be at least its minimum width plus ipadx*2 pixels, since 
the padding applies to both sides of the component. Similarly, the height of the component will be 
at least its minimum height plus ipady*2 pixels. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 5 

insets 
Specifies the external padding of the component -- the minimum amount of space between the 
component and the edges of its display area. The value is specified as an Insets object. By 
default, each component has no external padding. 

anchor 
Used when the component is smaller than its display area to determine where (within the area) to 
place the component. Valid values (defined as GridBagConstraints constants) are CENTER (the 
default), PAGE_START, PAGE_END, LINE_START, LINE_END, FIRST_LINE_START, 
FIRST_LINE_END, LAST_LINE_END, and LAST_LINE_START.  

Here is a picture of how these values are interpreted in a container that has the default, left-to-
right component orientation.  

FIRST_LINE_START PAGE_START FIRST_LINE_END 

LINE_START CENTER LINE_END 

LAST_LINE_START PAGE_END LAST_LINE_END 

weightx, weighty 
   The weightx and weighty specify the horizontal and vertical spaces between the 
edges of the container and the cell respectively. The default value is 0.0. 
 
The constraints can be set by method void setConstraints(Component obj, GridBagConstraints 
obj) 
 
 
 
 
 
 
 
 
 
 
(6) BoxLayout : It is general purpose layout manager which is an extension of FlowLayout. It places the 
components on the top of each other or places them one after another in a row. 
 
Its constructor is  BoxLayout(Container obj, int placement) 
Here placement can be BoxLayout.PAGE_AXIS : - It places components on top of each other. 
     BoxLayout.LINE_AXIS : - It places components line by line 
 
 
 
 
 
 
 
 
 
 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 6 

(7) SpringLayout : It is very flexible layout that has many features for specifying the size of the 
components. You can have different size rows and columns in a container. In SpringLayout you can 
define a fixed distance between the left edge of one component and right edge of another component. 
 
Its constructor is  SpringLayout( ) 
 
The constraints can be put by method 
  
void putConstraints(String edge1, Component obj1, int distance, String edge2, Component obj2) 

 
 

 
 

 
 
 
 

 
Program for BorderLayout 

 
import java.awt.*; 
import javax.swing.*; 
/* 
<applet code = “BorderEx.class” width = 300 height = 300> 
</applet> */ 
public class BorderEx extends JApplet 
{ 
 public void init( ) 
 { 
  Container pane = getContentPane( ); 
  pane.setLayout(new BorderLayout( )); 
  pane.add(new JButton(“North”), BorderLayout.NORTH); 
  pane.add(new JButton(“South”), BorderLayout.SOUTH); 
  pane.add(new JButton(“East”), BorderLayout.EAST); 
  pane.add(new JButton(“West”), BorderLayout.WEST); 
  String msg = “This text is written \n in the text area \n which is in the center”; 
  pane.add(new JTextArea(msg), BorderLayout.CENTER); 
 } 

public Insets getInsets( ) //Output 
{ 
 Insets i = new Insets(20,20,20,20); 
 return i; 
} 

} 
  



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 7 

Program for GridLayout        Output 
 

import java.awt.*; 
import javax.swing.*; 
/* 
<applet code = “GridEx.class” width = 300 height = 300> 
</applet> */ 
public class GridEx extends JApplet 
{ 
 public void init( ) 
 { 
  Container pane = getContentPane( ); 
  pane.setLayout(new GridLayout(3,3,5,5)); 
  for(int i = 1; i<=3; i++) 
  { 
   pane.add(new JLabel(“Label “ + i)); 
   pane.add(new JTextField(5)); 
   pane.add(new JButton(“Button “ + i)); 
  } 
 } 
} 
 

Components of Swing 
 
JLabel 
 
 With the JLabel class, you can display un-selectable text and images. If you need to create a 
component that displays a string, an image, or both, you can do so by using or extending JLabel. 
 
 Provide text instructions on a GUI 
 Read-only text  
 Programs rarely change a label’s contents 

JLabel Constructor 

 JLabel (String text)  Creates a JLabel instance with the specified text. 
 JLabel (Icon image)  Creates a JLabel instance with the specified image. 
 JLabel (String text, Icon i, int Align) Creates a JLabel instance with the specified text, image, 

and alignment. 
 

The Icon is an interface which is implemented by the ImageIcon class. This class draws an image. 
Its constructor are 

 ImageIcon(String filename) 
 ImageIcon(URL url) 

JLabel Method 

 Icon getIcon( ) -- Returns the graphic image (glyph, icon) that the label displays. 

 String getText( ) -- Returns the text string that the label displays. 

 void setIcon(Icon icon) -- Defines the icon this component will display. 

 void setText(String text) -- Defines the single line of text this component will display. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 8 

JTextField 

 
 JTextField allows editing/displaying of a single line of text. New features include the ability to 
justify the text left, right, or center, and to set the text’s font. JTextField is an input area where the user 
can type in characters. It can generate ActionEvent when user presses the enter key after input the data 
in the text field.  
 

JTextField Constructor 
 
 JTextField( ) Constructs a new TextField. 

 JTextField(int columns) Constructs a new empty TextField with the specified number of 
columns. 

 JTextField(String text)  Constructs a new TextField initialized with the specified text. 

 JTextField(String text, int columns) Constructs a new TextField initialized with the specified 
text and columns. 

 

JTextArea 

 
 JTextArea allows editing of multiple lines of text. It does not display any scroll bar. JTextArea can 
be used in conjunction with class JScrollPane to achieve scrolling. 
 

JTextArea Constructor 
 
 JTextArea ( ) Constructs a new TextArea. 

 JTextArea (int rows, int columns) Constructs a new empty TextArea with the specified number 
of rows and columns. 

 JTextArea (String text) Constructs a new TextArea with the specified text displayed. 

 JTextArea (String text, int rows, int columns) Constructs a new TextArea with the specified 
text and number of rows and columns. 

 

JPasswordField 
 
 JPasswordField creates a text field which displays the disk (dots) instead of the actual 
characters. It is used when user interacts with password type of data. 

JPasswordField Constructor 

 JPasswordField( ) Constructs a new JPasswordField, with a default document, null starting text 
string, and 0 column width. 

 JPasswordField(int length) Constructs a new empty JPasswordField with the specified number 
of characters. 

 JPasswordField(String text) Constructs a new JPasswordField initialized with the specified 
text. 

 JPasswordField(String text, int length) Constructs a new JPasswordField initialized with the 
specified text and length. 

 

 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 9 

JButton 
 
 A button is a component the user clicks to trigger a specific action. Command buttons: is created 
with class JButton. It generates ActionEvent. 

JButton Constructor 

 JButton(Icon i) Creates a button with an icon. 

 JButton(String text) Creates a button with text. 

 JButton(String text, Icon i) Creates a button with initial text and an icon. 

 

JCheckBox 
 
 A checkbox item can be selected and deselected, and it also displays its current state. 

JCheckBox Constructor 

 JCheckBox(Icon i)  
          Creates an initially unselected check box with an icon.  

 JCheckBox(Icon i,boolean state)  
          Creates a check box with an icon and specifies whether or not it is initially selected.  

 JCheckBox(String text)  
          Creates an initially unselected check box with text.  

 JCheckBox(String text,boolean stae)  
          Creates a check box with text and specifies whether or not it is initially selected.  

 JCheckBox(String text,Icon i)  
          Creates an initially unselected check box with the specified text and icon.  

 JCheckBox(String text,Icon i,boolean state)  
          Creates a check box with text and icon, and specifies whether or not it is initially 
selected. 

 

JRadioButton 

 It is used to create radio button. It is Used with a ButtonGroup object to create a group of buttons 
in which only one button at a time can be selected. (Create a ButtonGroup object and use it’s add 
method to include the JRadioButton objects in the group.)  

Note: The ButtonGroup object is a logical grouping -- not a physical grouping. To create a button 
panel, you should still create a JPanel or similar container-object and add a Border to it to set it off from 
surrounding components.  

JRadioButton Constructor 

 JRadioButton(Icon i)  
          Creates an initially unselected radio button with the specified image but no text.  

 JRadioButton(Icon i, boolean state)  
          Creates a radio button with the specified image and selection state, but no text. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 10 

  JRadioButton(String text)  
          Creates an unselected radio button with the specified text.  

 JRadioButton(String text, boolean state)  
          Creates a radio button with the specified text and selection state.  

 JRadioButton(String text, Icon i)  
          Creates a radio button that has the specified text and image and that is initially unselected.  

 JRadioButton(String text, Icon i, boolean state)  
          Creates a radio button that has the specified text, image, and selection state 

JComboBox 
 
 It creates a combo box which is a combination of a text field and a drop down list. 

JComboBox Constructor 

 JComboBox( ) Creates a JComboBox with a default data model. 

 JComboBox(Vector items) Creates a JComboBox that contains the elements in the specified 
Vector. 

To add items later in the combo box use void addItem(Object item) method. 
 

JScrollPane 

 
 A scroll pane is used to display other component or an image in a rectangular area. This pane 
can have horizontal as well as vertical scroll bars. 

JScrollPane Constructor 

 JScrollPane (Component obj) 

 JScrollPane (int vertScrollBar, int horiScrollBar ) 

 JScrollPane (Component obj, int vertScrollBar, int horiScrollBar) 

 
Its constants are 

HORIZONTAL_SCROLLBAR_ALWAYS 

HORIZONTAL_SCROLLBAR_AS_NEEDED 

VERTICAL_SCROLLBAR_ALWAYS 

VERTICAL_SCROLLBAR_AS_NEEDED 

JList 
 
 The JList class creates a list box which can display more than one item in the box at a time. It 
also allows the user to select more than one item from the list. If the items in the list are too many to 
display, you have to add it in a scroll pane as it does not display it by default. 

JList Constructor 

 JList ( )  Constructs a JList with an empty model. 

 JList (Object[ ] listData)  Constructs a JList that displays the elements in the specified array. 

 JList (Vector listData)  Constructs a JList that displays the elements in the specified Vector. 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 11 

JPanel 
   
 The JPanel class is used to create a panel. We can add our components to a panel and panel 
should be added to a container such as frame. Now to draw the applet window public void 
paintComponent(Graphics g) method is used instead of paint( ) method. 
 

JFrame 

 
 The JFrame class creates a frame which is a window. This window has a border, a title and 
buttons for closing, minimizing and maximizing the window.  

JFrame Constructor 

 JFrame( ) Constructs a new frame that is initially invisible. 

 JFrame(String title) Creates a new, initially invisible Frame with the specified title. 

 
Frame Program 
 
import javax.swing.*; 
public class JFrameex 
{ 
 public JFrameex() 
 { 
  JFrame fr= new JFrame("my frame"); 
  fr.setSize(250,150); 
  fr.setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE); 
  JLabel lbl= new JLabel("this label is on frame"); 
  fr.add(lbl); 
  fr.setVisible(true); 
 } 
 public static void main(String args[]) 
 { 
  JFrameex obj= new JFrameex(); 
 } 
} 

 
JScrollBar 
 
 The JScrollBar is used to create vertical and horizontal scroll bars. 

JScrollBar Constructor 

 JScrollBar ( ) 

 JScrollBar (int type)  // type  =  JScrollBar.HORIZONTAL or JScrollBar.VERTICAL 

 JScrollBar (int type, int initialPos, int sliderSize, int min, int max) 

 

 
 
 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 12 

JMenu, JMenuBar, JMenuItem 
 

   These classes provides functionalities to create a menu bar which contains menus. These 
menus in turns have menu items. The menu bar is created using JMenuBar class, menu is created 
using JMenu class, and the menu items are created using JMenuItems. 

To Create a menu follow the following steps 

1. Create a JMenuBar object 

2. Then set the menu bar using setJMenuBar( ) method. 

3. Create menu object of JMenu class. 

4. Create menu item using JMenuItem class. 

5. Add menu items to particular menus. 

6. Add menu to menu bar. 

JMenu, JMenuBar, JMenuItem Constructor 

 JMenuBar ( ) 

 
 JMenu ( ) 

 JMenu ( String name) 

 
 JMenuItem ( ) 

 JMenuItem (String itemName) 

 JMenuItem (Icon i) 

 JMenuItem (String itemName, Icon i) 

Menu Program 

import java.awt.*; 
import javax.swing.*; 
import java.awt.event.*; 
public class Menuex extends JFrame implements ActionListener 
{ 
 JLabel lbl; 
 public Menuex(String title) 
 { 
  super(title); 
  Container pane=getContentPane(); 
  pane.setLayout(new FlowLayout()); 
  lbl=new JLabel(); 
  JMenuBar mbar= new JMenuBar(); 
  setJMenuBar(mbar); 
  JMenu file= new JMenu("file"); 
  JMenu mail= new JMenu("mail"); 
 
  JMenuItem i1=new JMenuItem("new"); 
  JMenuItem i2=new JMenuItem("open"); 
  JMenuItem i3=new JMenuItem("email"); 
  JMenuItem i4=new JMenuItem("inbox"); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 13 

   
file.add(i1); 

  file.add(i2); 
  mail.add(i3);    
  mail.add(i4); 
   

mbar.add(file); 
  mbar.add(mail); 
   

setSize(200,200); 
  setVisible(true); 
  setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
 
  i1.addActionListener(this); 
  i2.addActionListener(this); 
  i3.addActionListener(this); 
  i4.addActionListener(this); 
 } 
 public void actionPerformed(ActionEvent obj) 
 { 
  lbl.setText("you selected" + obj.getActionCommand()); 
 } 
  

public static void main(String args[]) 
 { 
  Menuex obj1=new Menuex("my menu"); 
 } 
} 
Radio Button Program 

import java.awt.*; 
import javax.swing.*; 
 
/* <applet code = “RadioEx.class” width = 300 height = 300> 
</applet> */ 
 
public class RadioEx extends JApplet 
{ 
 JLabel g,m; 
 ButtonGroup gender, marital; 
 JRadioButton male, female, single, married; 
 public void init( ) 
 { 
  Container pane = getContentPane( ); 
  pane.setLayout(new FlowLayout( )); 
  male = new JRadioButton(“Male”); 
  female = new JRadioButton(“Female”); 
  single = new JRadioButton(“Single”); 
  married = new JRadioButton(“Married”); 
  gender = new ButtonGroup( ); 
  marital = new ButtonGroup( ); 
  gender.add(male); 
  gender.add(female); 
  marital.add(single); 



Vishal Sir (MCA) 

9427732231 

Naman Sir (MCA)  

9408526428 

 

Version: 02  

101 Shiromani Complex, Above YOR Restaurant, Near Balaji Mandir, Karansinghji Highschool Chowk, Rajkot 360001 14 

  marital.add(married); 
  g = new JLabel(“Gender”); 
  m = new JLabel(“Marital Status”); 
  pane.add(g); 
  pane.add(male); 
  pane.add(female); 
  pane.add(m); 
  pane.add(single); 
  pane.add(married); 
 } 
} 

Java Question Bank 

 Characteristics of Java 

 Explain JIT & JVM 

 Why Java is platform independent language? 

 Why public static void main (String args[ ]) ? 

 Explain Type casting 

 What is Array? Explain 

 Explain new operator in Java 

 Explain “this” keyword 

 Define Garbage collection  

 Define Finalise ( ) method 

 Write a note on static members 

 Write a note on Access Specifiers 

 Explain final keyword with its uses. 

 Write a note on Inheritance 

 Explain super keyword with its uses 

 What is abstract class and method? 

 Explain Command Line Arguments 

 Explain Dynamic Method Dispatch 

 Write a note on Interface 

 Define Native method, volatile and transient 

 Write a note on Package 

 How Java supports Exception Handling? 

 Differentiate throw and throws 

 Life cycle of Thread 

 By how many ways you can create thread.  

 Write a note on Priorities of Thread 

 Define Deadlock 

 Explain Inter Thread Communication 

 What is Applet? Explain 

 Life Cycle of Applet 

 Explain Applet tag 

 Explain Vector class 

 Explain Event Delegation Model 

 Explain Adapter class 

 Write a note on stream 

 What is Swing? Differentiate awt & swing 

 Write a note on Layout available in Java 

 Explain Border Layout in detail 

 Write a note on JFrame 

 

 
 
 
 

YOR Classes 
 

Any BCA, BSc.IT, MCA, MSc.IT Subject Coaching. 

Project Training on VB, C#.Net, ASP.Net, PHP in 5th and 6th Semester 

Competitive Exams like CMAT, Bank Clerk, Bank PO, Post Office, SSC 

Vishal Sir (MCA) 9427732231  Naman Sir (MCA) 9408526428 


	JAVA1.pdf
	JAVA2.pdf
	JAVA2-A.pdf
	JAVA3.pdf
	JAVA4.pdf
	JAVA5.pdf
	JAVA6.pdf
	JAVA7.pdf
	JAVA8.pdf
	JAVA9.pdf

