
Ashish Modi

File Handling Functions

 fopen()

The fopen() function opens a file or URL. If fopen() fails, it returns FALSE and an error on
failure. You can hide the error output by adding an '@' in front of the function name.

fopen(filename,mode,include_path,context)

Parameter Description

filename Required. Specifies the file or URL to open
mode Required. Specifies the type of access you require to the

file/stream.

Possible values:

"r" (Read only. Starts at the beginning of the file)

"r+" (Read/Write. Starts at the beginning of the file)

"w" (Write only. Opens and clears the contents of file; or creates a
new file if it doesn't exist)

"w+" (Read/Write. Opens and clears the contents of file; or
creates a new file if it doesn't exist)

"a" (Write only. Opens and writes to the end of the file or creates
a new file if it doesn't exist)

"a+" (Read/Write. Preserves file content by writing to the end of
the file)

"x" (Write only. Creates a new file. Returns FALSE and an error if
file already exists)

"x+" (Read/Write. Creates a new file. Returns FALSE and an error
if file already exists)

include_path Optional. Set this parameter to '1' if you want to search for the file
in the include_path (which is set in php.ini) as well

context Optional. Specifies the context of the file handle. Context is a set
of options that can modify the behavior of a stream

Example

<?php
$file = fopen("test.txt","r");
$file = fopen("/home/test/test.txt","r");
$file = fopen("/home/test/test.gif","wb");
$file = fopen("http://www.example.com/","r");
$file = fopen("ftp://user:password@example.com/test.txt","w");
?>

Ashish Modi

 fread()

The fread() reads from an open file. The function will stop at the end of the file or when it
reaches the specified length, whichever comes first. This function returns the read string,
or FALSE on failure.

fread(file,length)

Parameter Description
file Required. Specifies the open file to read from
length Required. Specifies the maximum number of bytes to read

Example 1

Read 10 bytes from file:

<?php
$file = fopen("test.txt","r");
fread($file,"10");
fclose($file);
?>

Example 2

Read entire file:

<?php
$file = fopen("test.txt","r");
fread($file,filesize("test.txt"));
fclose($file);
?>

 fwrite()

The fwrite() writes to an open file. The function will stop at the end of the file or when it
reaches the specified length, whichever comes first. This function returns the number of
bytes written, or FALSE on failure.

fwrite(file,string,length)

Parameter Description

file Required. Specifies the open file to write to
string Required. Specifies the string to write to the open file
length Optional. Specifies the maximum number of bytes to write

Example

<?php
$file = fopen("test.txt","w");
echo fwrite($file,"Hello World. Testing!");

Ashish Modi

fclose($file);
?>

The output of the code above will be:

21

 fclose()

The fclose() function closes an open file. This function returns TRUE on success or FALSE
on failure.

fclose(file)

Parameter Description
file Required. Specifies the file to close

Example

<?php
$file = fopen("test.txt","r");
//some code to be executed
fclose($file);
?>

 file_exists()

The file_exists() function checks whether or not a file or directory exists. This function
returns TRUE if the file or directory exists, otherwise it returns FALSE.

file_exists(path)

Parameter Description
path Required. Specifies the path to check

Example

<?php
echo file_exists("test.txt");
?>

The output of the code above will be:

1

 is_readable()

The is_readable() function checks whether the specified file is readable. This function
returns TRUE if the file is readable.

is_readable(file)

Ashish Modi

Parameter Description
File Required. Specifies the file to check

Example

<?php
$file = "test.txt";
if(is_readable($file))
{
echo ("$file is readable");
}

else
{
echo ("$file is not readable");
}

?>

The output of the code above could be:

test.txt is readable

 is_writeable()

The is_writeable() function checks whether the specified file is writeable. This function
returns TRUE if the file is writeable. This function is an alias of the is_writable() function.

is_writeable(file)

Parameter Description
file Required. Specifies the file to check

Example

<?php
$file = "test.txt";
if(is_writeable($file))
{
echo ("$file is writeable");
}

else
{
echo ("$file is not writeable");
}

?>

The output of the code above could be:

test.txt is writeable

Ashish Modi

 fgetc()

The fgetc() function returns a single character from an open file.

fgetc(file)

Parameter Description
File Required. Specifies the file to check

Note: This function is slow and should not be used on large files. If you need to read one
character at a time from a large file, use fgets() to read data one line at a time and then
process the line one character at a time with fgetc().

Example 1

<?php
$file = fopen("test2.txt","r");
echo fgetc($file);
fclose($file);
?>

The output of the code above will be: H

Example 2

Read file character by character:

<?php
$file = fopen("test2.txt","r");
while (! feof ($file))
{
echo fgetc($file);
}

fclose($file);
?>

The output of the code above will be:

Hello, this is a test file.

 fgets()

The fgets() function returns a line from an open file. The fgets() function stops returning
on a new line, at the specified length, or at EOF, whichever comes first. This function
returns FALSE on failure.

fgets(file,length)

Parameter Description
File Required. Specifies the file to read from

length Optional. Specifies the number of bytes to read. Default is 1024 bytes.

Ashish Modi

Example 1

<?php
$file = fopen("test.txt","r");
echo fgets($file);
fclose($file);
?>

The output of the code above will be:

Hello, this is a test file.

Example 2

Read file line by line:

<?php
$file = fopen("test.txt","r");
while(! feof($file))
{
echo fgets($file). "
";
}

fclose($file);
?>

The output of the code above will be:

Hello, this is a test file.
There are three lines here.
This is the last line.

 file()

The file() reads a file into an array. Each array element contains a line from the file, with
newline still attached.

file(path,include_path,context)

Parameter Description
path Required. Specifies the file to read
include_path Optional. Set this parameter to '1' if you want to search for the file

in the include_path (which is set in php.ini) as well
context Optional. Specifies the context of the file handle. Context is a set

of options that can modify the behavior of a stream. Can be
skipped by using NULL.

Example

<?php
print_r(file("test.txt"));
?>

Ashish Modi

The output of the code above will be:

Array
(
[0] => Hello World. Testing testing!
[1] => Another day, another line.
[2] => If the array picks up this line,
[3] => then is it a pickup line?
)

 file_get_contents()

The file_get_contents() reads a file into a string. This function is the preferred way to
read the contents of a file into a string. Because it will use memory mapping techniques,
if this is supported by the server, to enhance performance.

file_get_contents(path,include_path,context,start,max_length)

Parameter Description
path Required. Specifies the file to read

include_path Optional. Set this parameter to '1' if you want to search for the file
in the include_path (in php.ini) as well

context Optional. Specifies the context of the file handle. Context is a set
of options that can modify the behavior of a stream. Can be
skipped by using NULL.

start Optional. Specifies where in the file to start reading. This
parameter was added in PHP 5.1

max_length Optional. Specifies how many bytes to read. This parameter was
added in PHP 5.1

Example

<?php
echo file_get_contents("test.txt");
?>

The output of the code above will be:

This is a test file with test text.

Example 2

<?php
$homepage = file_get_contents('http://www.google.com/');
echo $homepage;
?>

Output :- it will display the content from google home page.

Ashish Modi

 File_put_contents()

The file_put_contents() writes a string to a file. This function follows these rules when
accessing a file:

 If FILE_USE_INCLUDE_PATH is set, check the include path for a copy of *filename*
 Create the file if it does not exist
 Open the file
 Lock the file if LOCK_EX is set
 If FILE_APPEND is set, move to the end of the file. Otherwise, clear the file content
 Write the data into the file
 Close the file and release any locks

This function returns the number of character written into the file on success, or FALSE on
failure.

file_put_contents(file,data,mode,context)

Parameter Description
File Required. Specifies the file to write to. If the file does not exist,

this function will create one
data Required. The data to write to the file. Can be a string, an array or

a data stream

mode Optional. Specifies how to open/write to the file. Possible values:

FILE_USE_INCLUDE_PATH

FILE_APPEND

LOCK_EX
context Optional. Specifies the context of the file handle. Context is a set

of options that can modify the behavior of a stream.

Note: Use FILE_APPEND to avoid deleting the existing content of the file.

Example

<?php
echo file_put_contents("test.txt","Hello World. Testing!");
?>

The output of the code above will be:

21

 ftell()

The ftell() function returns the current position in an open file. Returns the current file
pointer position, or FALSE on failure.

ftell(file)

Ashish Modi

Parameter Description
File Required. Specifies the open file to check

Example

<?php
$file = fopen("test.txt","r");

// print current position
echo ftell($file);

// change current position
fseek($file,"15");

// print current position again
echo "
" . ftell($file);

fclose($file);
?>

The output of the code above will be:

0
15

 fseek()

The fseek() function seeks in an open file. This function moves the file pointer from its
current position to a new position, forward or backward, specified by the number of
bytes.

This function returns 0 on success, or -1 on failure. Seeking past EOF will not generate an
error.

fseek(file,offset,whence)

Parameter Description
File Required. Specifies the open file to seek in

offset Required. Specifies the new position (measured in bytes from the
beginning of the file)

whence Optional. (added in PHP 4). Possible values:

SEEK_SET - Set position equal to offset. Default

SEEK_CUR - Set position to current location plus offset

SEEK_END - Set position to EOF plus offset (to move to a position
before EOF, the offset must be a negative value)

Tip: Find the current position by using ftell()!

Ashish Modi

Example

<?php
$file = fopen("test.txt","r");
// read first line
fgets($file);
// move back to beginning of file
fseek($file,0);
?>

 rewind()

The rewind() function "rewinds" the position of the file pointer to the beginning of the file.
This function returns TRUE on success, or FALSE on failure.

rewind(file)

Parameter Description
file Required. Specifies the open file

Example

<?php
$file = fopen("test.txt","r");

//Change position of file pointer
fseek($file,"15");
//Set file pointer to 0
rewind($file);
fclose($file);
?>

 copy()

The copy() function copies a file. This function returns TRUE on success and FALSE on
failure.

copy(file,to_file)

Parameter Description
File Required. Specifies the file to copy
to_file Required. Specifies the file to copy to

Note: If the destination file already exists, it will be overwritten.

Example

<?php
echo copy("source.txt","target.txt");
?>

Ashish Modi

The output of the code above will be:

1

 unlink()

The unlink() function deletes a file. This function returns TRUE on success, or FALSE on
failure.

unlink(filename,context)

Parameter Description

filename Required. Specifies the file to delete
context Optional. Specifies the context of the file handle. Context is a set

of options that can modify the behavior of a stream

Example

<?php
$file = "test.txt";
if (!unlink($file))
{
echo ("Error deleting $file");
}

else
{
echo ("Deleted $file");
}

?>

 rename()

The rename() function renames a file or directory. This function returns TRUE on success,
or FALSE on failure.

rename(oldname,newname,context)

Parameter Description
oldname Required. Specifies the file or directory to be renamed
newname Required. Specifies the new name of the file or directory
context Optional. Specifies the context of the file handle. Context is a set

of options that can modify the behavior of a stream

Example

<?php
rename("images","pictures");
?>

Ashish Modi

 move_uploaded_file()

The move_uploaded_file() function moves an uploaded file to a new location. This
function returns TRUE on success, or FALSE on failure.

move_uploaded_file(file,newloc)

Parameter Description
File Required. Specifies the file to be moved

Newloc Required. Specifies the new location for the file

Note: This function only works on files uploaded via HTTP POST.
Note: If the destination file already exists, it will be overwritten.

Upload.html

<html>
<title>Upload Demo</title>
<form enctype="multipart/form-data" method="post" action="upload2.php">

Send this file: <input name="userfile" type="file" />

<input type="submit" value="Send File" />

</form>
</html>

Upload2.php

<?php

$fileName = $_FILES["userfile"]["name"];

$fileTmpLoc = $_FILES["userfile"]["tmp_name"];

$pathAndName = "uploads/".$fileName; //create this folder in your dir.

$moveResult = move_uploaded_file($fileTmpLoc, $pathAndName);

if ($moveResult == true)

{

 echo "File has been moved from " . $fileTmpLoc . " to " . $pathAndName;

}

else

{

 echo "ERROR: File not moved correctly";

}

?>

